Modeling the temporal network dynamics of neuronal cultures
Jose Cadena,
Ana Paula Sales,
Doris Lam,
Heather A Enright,
Elizabeth K Wheeler and
Nicholas O Fischer
PLOS Computational Biology, 2020, vol. 16, issue 5, 1-20
Abstract:
Neurons form complex networks that evolve over multiple time scales. In order to thoroughly characterize these networks, time dependencies must be explicitly modeled. Here, we present a statistical model that captures both the underlying structural and temporal dynamics of neuronal networks. Our model combines the class of Stochastic Block Models for community formation with Gaussian processes to model changes in the community structure as a smooth function of time. We validate our model on synthetic data and demonstrate its utility on three different studies using in vitro cultures of dissociated neurons.Author summary: Neurons form complex networks that play a critical role in the development and aging of the brain, as well as in health and disease. Understanding how these networks form and evolve over time can lead us to advances in neuronal and cognitive health. Previous studies have mainly used summary statistics or graph features recorded at different points in time to analyze neuronal networks. However, this approach ignores the temporal dependency of these features and may lead to discovering spurious patterns in the data. In order to thoroughly characterize neuronal networks, time dependencies must be explicitly modeled. We present a statistical model that captures both the underlying structural and temporal dynamics of neuronal networks.
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007834 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 07834&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1007834
DOI: 10.1371/journal.pcbi.1007834
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().