Bayesian regression explains how human participants handle parameter uncertainty
Jannes Jegminat,
Maya A Jastrzębowska,
Matthew V Pachai,
Michael H Herzog and
Jean-Pascal Pfister
PLOS Computational Biology, 2020, vol. 16, issue 5, 1-23
Abstract:
Accumulating evidence indicates that the human brain copes with sensory uncertainty in accordance with Bayes’ rule. However, it is unknown how humans make predictions when the generative model of the task at hand is described by uncertain parameters. Here, we tested whether and how humans take parameter uncertainty into account in a regression task. Participants extrapolated a parabola from a limited number of noisy points, shown on a computer screen. The quadratic parameter was drawn from a bimodal prior distribution. We tested whether human observers take full advantage of the given information, including the likelihood of the quadratic parameter value given the observed points and the quadratic parameter’s prior distribution. We compared human performance with Bayesian regression, which is the (Bayes) optimal solution to this problem, and three sub-optimal models, which are simpler to compute. Our results show that, under our specific experimental conditions, humans behave in a way that is consistent with Bayesian regression. Moreover, our results support the hypothesis that humans generate responses in a manner consistent with probability matching rather than Bayesian decision theory.Author summary: How do humans make prediction when the critical factor that influences the quality of the prediction is hidden? Here, we address this question by conducting a simple psychophysical experiment in which participants had to extrapolate a parabola with an unknown quadratic parameter. We show that in this task, humans perform in a manner consistent with the mathematically optimal model, i.e., Bayesian regression.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007886 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 07886&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1007886
DOI: 10.1371/journal.pcbi.1007886
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().