Compositional Lotka-Volterra describes microbial dynamics in the simplex
Tyler A Joseph,
Liat Shenhav,
Joao B Xavier,
Eran Halperin and
Itsik Pe’er
PLOS Computational Biology, 2020, vol. 16, issue 5, 1-22
Abstract:
Dynamic changes in microbial communities play an important role in human health and disease. Specifically, deciphering how microbial species in a community interact with each other and their environment can elucidate mechanisms of disease, a problem typically investigated using tools from community ecology. Yet, such methods require measurements of absolute densities, whereas typical datasets only provide estimates of relative abundances. Here, we systematically investigate models of microbial dynamics in the simplex of relative abundances. We derive a new nonlinear dynamical system for microbial dynamics, termed “compositional” Lotka-Volterra (cLV), unifying approaches using generalized Lotka-Volterra (gLV) equations from community ecology and compositional data analysis. On three real datasets, we demonstrate that cLV recapitulates interactions between relative abundances implied by gLV. Moreover, we show that cLV is as accurate as gLV in forecasting microbial trajectories in terms of relative abundances. We further compare cLV to two other models of relative abundance dynamics motivated by common assumptions in the literature—a linear model in a log-ratio transformed space, and a linear model in the space of relative abundances—and provide evidence that cLV more accurately describes community trajectories over time. Finally, we investigate when information about direct effects can be recovered from relative data that naively provide information about only indirect effects. Our results suggest that strong effects may be recoverable from relative data, but more subtle effects are challenging to identify.Author summary: Dynamic changes in microbial communities play an important role in human health and disease. Specifically, deciphering how microbial species in a community interact with each other and their environment can elucidate mechanisms of disease, a problem typically investigated using tools from community ecology. Yet, such methods require measurements of absolute densities, whereas typical only provide estimates of relative abundances. We investigate methods for describing microbial dynamics in terms of relative abundances using approaches from machine learning and dynamical systems. Across three real datasets, we show that relative abundances are sufficient to describe compositional dynamics. Additionally, we show that models trained on relative abundances alone predict future compositions as well models trained on absolute abundances. Finally, we provide criteria for when direct effects, which typically can only be learned from absolute abundances, are recoverable for relative data. As a proof of concept, we recapitulate a previously proposed interaction network for C. difficile colonization.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007917 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 07917&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1007917
DOI: 10.1371/journal.pcbi.1007917
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().