EconPapers    
Economics at your fingertips  
 

Classifying sex and strain from mouse ultrasonic vocalizations using deep learning

A Ivanenko, P Watkins, M A J van Gerven, K Hammerschmidt and B Englitz

PLOS Computational Biology, 2020, vol. 16, issue 6, 1-27

Abstract: Vocalizations are widely used for communication between animals. Mice use a large repertoire of ultrasonic vocalizations (USVs) in different social contexts. During social interaction recognizing the partner's sex is important, however, previous research remained inconclusive whether individual USVs contain this information. Using deep neural networks (DNNs) to classify the sex of the emitting mouse from the spectrogram we obtain unprecedented performance (77%, vs. SVM: 56%, Regression: 51%). Performance was even higher (85%) if the DNN could also use each mouse's individual properties during training, which may, however, be of limited practical value. Splitting estimation into two DNNs and using 24 extracted features per USV, spectrogram-to-features and features-to-sex (60%) failed to reach single-step performance. Extending the features by each USVs spectral line, frequency and time marginal in a semi-convolutional DNN resulted in a performance mid-way (64%). Analyzing the network structure suggests an increase in sparsity of activation and correlation with sex, specifically in the fully-connected layers. A detailed analysis of the USV structure, reveals a subset of male vocalizations characterized by a few acoustic features, while the majority of sex differences appear to rely on a complex combination of many features. The same network architecture was also able to achieve above-chance classification for cortexless mice, which were considered indistinguishable before. In summary, spectrotemporal differences between male and female USVs allow at least their partial classification, which enables sexual recognition between mice and automated attribution of USVs during analysis of social interactions.Author summary: Many animals communicate by producing sounds, so-called vocalizations. Mice use many different kinds of vocalizations in different social contexts. During social interaction recognizing the partner's sex is important and female mice appear to know the difference between male and female vocalizations. However, previous research had suggested that male and female vocalizations are very similar. We here show for the first time that the emitter's sex can be guessed from the vocalization alone, even single ones. The full spectrogram was the best basis for this, while reduced representations (e.g. basic properties of the vocalization) were less informative. We therefore conclude that while the information about the emitter's sex is present in the vocalization, both mice and our analysis must rely on complex properties to determine it. This novel insight is enabled by the use of recent machine learning techniques. In contrast, we show directly that a number of more basic techniques fail in this challenge. In summary, differences in the vocalizations between male and female mice allow to guess the emitter's sex, which enables sexual recognition between mice and automated analysis. This is important in studying social interactions between mice and how speech is produced and analyzed in the brain.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007918 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 07918&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1007918

DOI: 10.1371/journal.pcbi.1007918

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1007918