EconPapers    
Economics at your fingertips  
 

It’s about time: Analysing simplifying assumptions for modelling multi-step pathways in systems biology

Niklas Korsbo and Henrik Jönsson

PLOS Computational Biology, 2020, vol. 16, issue 6, 1-29

Abstract: Thoughtful use of simplifying assumptions is crucial to make systems biology models tractable while still representative of the underlying biology. A useful simplification can elucidate the core dynamics of a system. A poorly chosen assumption can, however, either render a model too complicated for making conclusions or it can prevent an otherwise accurate model from describing experimentally observed dynamics. Here, we perform a computational investigation of sequential multi-step pathway models that contain fewer pathway steps than the system they are designed to emulate. We demonstrate when such models will fail to reproduce data and how detrimental truncation of a pathway leads to detectable signatures in model dynamics and its optimised parameters. An alternative assumption is suggested for simplifying such pathways. Rather than assuming a truncated number of pathway steps, we propose to use the assumption that the rates of information propagation along the pathway is homogeneous and, instead, letting the length of the pathway be a free parameter. We first focus on linear pathways that are sequential and have first-order kinetics, and we show how this assumption results in a three-parameter model that consistently outperforms its truncated rival and a delay differential equation alternative in recapitulating observed dynamics. We then show how the proposed assumption allows for similarly terse and effective models of non-linear pathways. Our results provide a foundation for well-informed decision making during model simplifications.Author summary: Mathematical modelling can be a highly effective way of condensing our understanding of biological processes and highlight the most important aspects of them. Effective models are based on simplifying assumptions that reduce complexity while still retaining the core dynamics of the original problem. Finding such assumptions is, however, not trivial. In this paper, we explore ways in which one can simplify long chains of simple reactions wherein each step is only dependent on its predecessor. After generating synthetic data from models that describe such chains in explicit detail we compare how well different simplifications retain the original dynamics. We show that the most common such simplification, which is to ignore parts of the chain, often renders models unable to account for time delays. However, we also show that when such a simplification has had a detrimental effect it leaves a detectable signature in its optimised parameter values. We also propose an alternative assumption which leads to a highly effective model with only three parameters. By comparing the effects of these simplifying assumptions in thousands of different cases and for different conditions we are able to clearly show when and why one is preferred over the other.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007982 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 07982&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1007982

DOI: 10.1371/journal.pcbi.1007982

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1007982