Linear-nonlinear cascades capture synaptic dynamics
Julian Rossbroich,
Daniel Trotter,
John Beninger,
Katalin Tóth and
Richard Naud
PLOS Computational Biology, 2021, vol. 17, issue 3, 1-27
Abstract:
Short-term synaptic dynamics differ markedly across connections and strongly regulate how action potentials communicate information. To model the range of synaptic dynamics observed in experiments, we have developed a flexible mathematical framework based on a linear-nonlinear operation. This model can capture various experimentally observed features of synaptic dynamics and different types of heteroskedasticity. Despite its conceptual simplicity, we show that it is more adaptable than previous models. Combined with a standard maximum likelihood approach, synaptic dynamics can be accurately and efficiently characterized using naturalistic stimulation patterns. These results make explicit that synaptic processing bears algorithmic similarities with information processing in convolutional neural networks.Author summary: Understanding how information is transmitted relies heavily on knowledge of the underlying regulatory synaptic dynamics. Existing computational models for capturing such dynamics are often either very complex or too restrictive. As a result, effectively capturing the different types of dynamics observed experimentally remains a challenging problem. Here, we propose a mathematically flexible linear-nonlinear model that is capable of efficiently characterizing synaptic dynamics. We demonstrate the ability of this model to capture different features of experimentally observed data.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008013 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 08013&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1008013
DOI: 10.1371/journal.pcbi.1008013
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().