Engineering recurrent neural networks from task-relevant manifolds and dynamics
Eli Pollock and
Mehrdad Jazayeri
PLOS Computational Biology, 2020, vol. 16, issue 8, 1-23
Abstract:
Many cognitive processes involve transformations of distributed representations in neural populations, creating a need for population-level models. Recurrent neural network models fulfill this need, but there are many open questions about how their connectivity gives rise to dynamics that solve a task. Here, we present a method for finding the connectivity of networks for which the dynamics are specified to solve a task in an interpretable way. We apply our method to a working memory task by synthesizing a network that implements a drift-diffusion process over a ring-shaped manifold. We also use our method to demonstrate how inputs can be used to control network dynamics for cognitive flexibility and explore the relationship between representation geometry and network capacity. Our work fits within the broader context of understanding neural computations as dynamics over relatively low-dimensional manifolds formed by correlated patterns of neurons.Author summary: Neurons in the brain form intricate networks that can produce a vast array of activity patterns. To support goal-directed behavior, the brain must adjust the connections between neurons so that network dynamics can perform desirable computations on behaviorally relevant variables. A fundamental goal in computational neuroscience is to provide an understanding of how network connectivity aligns the dynamics in the brain to the dynamics needed to track those variables. Here, we develop a mathematical framework for creating recurrent neural network models that can address this problem. Specifically, we derive a set of linear equations that constrain the connectivity to afford a direct mapping of task-relevant dynamics onto network activity. We demonstrate the utility of this technique by creating and analyzing a set of network models that can perform a simple working memory task. We then extend the approach to show how additional constraints can furnish networks whose dynamics are controlled flexibly by external inputs. Finally, we exploit the flexibility of this technique to explore the robustness and capacity limitations of recurrent networks. This network synthesis method provides a powerful means for generating and validating hypotheses about how task-relevant computations can emerge from network dynamics.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008128 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 08128&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1008128
DOI: 10.1371/journal.pcbi.1008128
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().