Reconciling emergences: An information-theoretic approach to identify causal emergence in multivariate data
Fernando E Rosas,
Pedro A M Mediano,
Henrik J Jensen,
Anil K Seth,
Adam B Barrett,
Robin L Carhart-Harris and
Daniel Bor
PLOS Computational Biology, 2020, vol. 16, issue 12, 1-22
Abstract:
The broad concept of emergence is instrumental in various of the most challenging open scientific questions—yet, few quantitative theories of what constitutes emergent phenomena have been proposed. This article introduces a formal theory of causal emergence in multivariate systems, which studies the relationship between the dynamics of parts of a system and macroscopic features of interest. Our theory provides a quantitative definition of downward causation, and introduces a complementary modality of emergent behaviour—which we refer to as causal decoupling. Moreover, the theory allows practical criteria that can be efficiently calculated in large systems, making our framework applicable in a range of scenarios of practical interest. We illustrate our findings in a number of case studies, including Conway’s Game of Life, Reynolds’ flocking model, and neural activity as measured by electrocorticography.Author summary: Many scientific domains exhibit phenomena that seem to be “more than the sum of their parts”; for example, flocks seem to be more than a mere collection of birds, and consciousness seems more than electric impulses between neurons. But what does it mean for a physical system to exhibit emergence? The literature on this topic contains various conflicting approaches, many of which are unable to provide quantitative, falsifiable statements. Having a rigorous, quantitative theory of emergence could allow us to discover the exact conditions that allow a flock to be more than individual birds, and to better understand how the mind emerges from the brain. Here we provide exactly that: a formal theory of what constitutes causal emergence, how to measure it, and what different “types” of emergence exist. To do this, we leverage recent developments in information dynamics—the study of how information flows through and is modified by dynamical systems. As part of this framework, we provide a mathematical definition of causal emergence, and also practical formulae for analysing empirical data. Using these, we are able to confirm emergence in the iconic Conway’s Game of Life, in certain flocking patterns, and in representations of motor movements in the monkey’s brain.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008289 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 08289&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1008289
DOI: 10.1371/journal.pcbi.1008289
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().