Reconstructing tumor evolutionary histories and clone trees in polynomial-time with SubMARine
Linda K Sundermann,
Jeff Wintersinger,
Gunnar Rätsch,
Jens Stoye and
Quaid Morris
PLOS Computational Biology, 2021, vol. 17, issue 1, 1-28
Abstract:
Tumors contain multiple subpopulations of genetically distinct cancer cells. Reconstructing their evolutionary history can improve our understanding of how cancers develop and respond to treatment. Subclonal reconstruction methods cluster mutations into groups that co-occur within the same subpopulations, estimate the frequency of cells belonging to each subpopulation, and infer the ancestral relationships among the subpopulations by constructing a clone tree. However, often multiple clone trees are consistent with the data and current methods do not efficiently capture this uncertainty; nor can these methods scale to clone trees with a large number of subclonal populations.Here, we formalize the notion of a partially-defined clone tree (partial clone tree for short) that defines a subset of the pairwise ancestral relationships in a clone tree, thereby implicitly representing the set of all clone trees that have these defined pairwise relationships. Also, we introduce a special partial clone tree, the Maximally-Constrained Ancestral Reconstruction (MAR), which summarizes all clone trees fitting the input data equally well. Finally, we extend commonly used clone tree validity conditions to apply to partial clone trees and describe SubMARine, a polynomial-time algorithm producing the subMAR, which approximates the MAR and guarantees that its defined relationships are a subset of those present in the MAR. We also extend SubMARine to work with subclonal copy number aberrations and define equivalence constraints for this purpose. Further, we extend SubMARine to permit noise in the estimates of the subclonal frequencies while retaining its validity conditions and guarantees. In contrast to other clone tree reconstruction methods, SubMARine runs in time and space that scale polynomially in the number of subclones.We show through extensive noise-free simulation, a large lung cancer dataset and a prostate cancer dataset that the subMAR equals the MAR in all cases where only a single clone tree exists and that it is a perfect match to the MAR in most of the other cases. Notably, SubMARine runs in less than 70 seconds on a single thread with less than one Gb of memory on all datasets presented in this paper, including ones with 50 nodes in a clone tree. On the real-world data, SubMARine almost perfectly recovers the previously reported trees and identifies minor errors made in the expert-driven reconstructions of those trees.The freely-available open-source code implementing SubMARine can be downloaded at https://github.com/morrislab/submarine.Author summary: Cancer cells accumulate mutations over time and consist of genetically distinct subpopulations. Their evolutionary history (as represented by tumor phylogenies) can be inferred from bulk cancer genome sequencing data. Current tumor phylogeny reconstruction methods have two main issues: they are slow, and they do not efficiently represent uncertainty in the reconstruction.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008400 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 08400&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1008400
DOI: 10.1371/journal.pcbi.1008400
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().