Sensor-based localization of epidemic sources on human mobility networks
Jun Li,
Juliane Manitz,
Enrico Bertuzzo and
Eric D Kolaczyk
PLOS Computational Biology, 2021, vol. 17, issue 1, 1-21
Abstract:
We investigate the source detection problem in epidemiology, which is one of the most important issues for control of epidemics. Mathematically, we reformulate the problem as one of identifying the relevant component in a multivariate Gaussian mixture model. Focusing on the study of cholera and diseases with similar modes of transmission, we calibrate the parameters of our mixture model using human mobility networks within a stochastic, spatially explicit epidemiological model for waterborne disease. Furthermore, we adopt a Bayesian perspective, so that prior information on source location can be incorporated (e.g., reflecting the impact of local conditions). Posterior-based inference is performed, which permits estimates in the form of either individual locations or regions. Importantly, our estimator only requires first-arrival times of the epidemic by putative observers, typically located only at a small proportion of nodes. The proposed method is demonstrated within the context of the 2000-2002 cholera outbreak in the KwaZulu-Natal province of South Africa.Author summary: Tracking the source of an epidemic outbreak is of crucial importance as it allows for identification of communities where control efforts should be focused for both short and long-term management and control of the disease. However, such identification is often problematic, time-consuming, and data-intensive. Recently network-based analysis approaches have been established for source detection to account for complex modern spreading, driven substantially by human mobility. Here we develop a probabilistic framework for waterborne disease, that allows investigators to infer the community or the region sparking an outbreak based on a sparse surveillance network. The framework can integrate prior information on the likelihood of a community being the source, for instance as a function of population size or hygiene conditions. Furthermore, we assign an accuracy measure to the resulting source estimate, which is crucial for its practical usability. We test the method in the context of the 2000-2002 cholera outbreak in the KwaZulu-Natal province with promising results. Moreover, we outline a series of guidelines in terms of data needs and preliminary operations to implement the proposed framework in practice.
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008545 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 08545&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1008545
DOI: 10.1371/journal.pcbi.1008545
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().