EconPapers    
Economics at your fingertips  
 

Large-scale simulations of biological cell sorting driven by differential adhesion follow diffusion-limited domain coalescence regime

Marc Durand

PLOS Computational Biology, 2021, vol. 17, issue 8, 1-13

Abstract: Cell sorting, whereby a heterogeneous cell mixture segregates and forms distinct homogeneous tissues, is one of the main collective cell behaviors at work during development. Although differences in interfacial energies are recognized to be a possible driving source for cell sorting, no clear consensus has emerged on the kinetic law of cell sorting driven by differential adhesion. Using a modified Cellular Potts Model algorithm that allows for efficient simulations while preserving the connectivity of cells, we numerically explore cell-sorting dynamics over very large scales in space and time. For a binary mixture of cells surrounded by a medium, increase of domain size follows a power-law with exponent n = 1/4 independently of the mixture ratio, revealing that the kinetics is dominated by the diffusion and coalescence of rounded domains. We compare these results with recent numerical studies on cell sorting, and discuss the importance of algorithmic differences as well as boundary conditions on the observed scaling.Author summary: Cell sorting describes the spontaneous segregation of identical cells in biological tissues. This phenomenon is observed during development or organ regeneration in a variety of biological systems. Minimization of the total surface energy of a tissue, in which adhesion strengh between homotypic and heterotypic cells are different, is one of the mechanisms that explain cell sorting. This mechanism is then similar to the one that drives demixing of two immiscible fluids. Because of the high sensibility of this process to finite-size and finite-time effects, no clear consensus has emerged on the scaling law of cell sorting driven by differential adhesion. Using an efficient numerical code, we were able to investigate this scaling law on very large binary mixtures of cells. We show that on long times, cell sorting obeys a universal power law, which is independent of the mixture ratio.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008576 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 08576&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1008576

DOI: 10.1371/journal.pcbi.1008576

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1008576