EconPapers    
Economics at your fingertips  
 

miRNA normalization enables joint analysis of several datasets to increase sensitivity and to reveal novel miRNAs differentially expressed in breast cancer

Shay Ben-Elazar, Miriam Ragle Aure, Kristin Jonsdottir, Suvi-Katri Leivonen, Vessela N Kristensen, Emiel A M Janssen, Kristine Kleivi Sahlberg, Ole Christian Lingjærde and Zohar Yakhini

PLOS Computational Biology, 2021, vol. 17, issue 2, 1-24

Abstract: Different miRNA profiling protocols and technologies introduce differences in the resulting quantitative expression profiles. These include differences in the presence (and measurability) of certain miRNAs. We present and examine a method based on quantile normalization, Adjusted Quantile Normalization (AQuN), to combine miRNA expression data from multiple studies in breast cancer into a single joint dataset for integrative analysis. By pooling multiple datasets, we obtain increased statistical power, surfacing patterns that do not emerge as statistically significant when separately analyzing these datasets. To merge several datasets, as we do here, one needs to overcome both technical and batch differences between these datasets. We compare several approaches for merging and jointly analyzing miRNA datasets. We investigate the statistical confidence for known results and highlight potential new findings that resulted from the joint analysis using AQuN. In particular, we detect several miRNAs to be differentially expressed in estrogen receptor (ER) positive versus ER negative samples. In addition, we identify new potential biomarkers and therapeutic targets for both clinical groups. As a specific example, using the AQuN-derived dataset we detect hsa-miR-193b-5p to have a statistically significant over-expression in the ER positive group, a phenomenon that was not previously reported. Furthermore, as demonstrated by functional assays in breast cancer cell lines, overexpression of hsa-miR-193b-5p in breast cancer cell lines resulted in decreased cell viability in addition to inducing apoptosis. Together, these observations suggest a novel functional role for this miRNA in breast cancer. Packages implementing AQuN are provided for Python and Matlab: https://github.com/YakhiniGroup/PyAQN.Author summary: This work demonstrates a practical approach to the joint-analysis of multiple miRNA expression profiling datasets acquired with different measurement technologies. The use of different platforms in miRNA profiling can lead to major differences in results. In particular, some miRNA species are less amenable to detection and quantification by certain platforms or designs. Our approach, termed AQuN, combines quantile normalization with special attention to missing entities, to normalize miRNA expression across datasets, technologies, designs and platforms. As we show, our proposed approach uncovers patterns of interest that would not have emerged as statistically significant when analyzing the datasets individually or with other standard-practice normalization methods.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008608 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 08608&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1008608

DOI: 10.1371/journal.pcbi.1008608

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1008608