EconPapers    
Economics at your fingertips  
 

Connectivity, reproduction number, and mobility interact to determine communities’ epidemiological superspreader potential in a metapopulation network

Brandon Lieberthal and Allison M Gardner

PLOS Computational Biology, 2021, vol. 17, issue 3, 1-22

Abstract: Disease epidemic outbreaks on human metapopulation networks are often driven by a small number of superspreader nodes, which are primarily responsible for spreading the disease throughout the network. Superspreader nodes typically are characterized either by their locations within the network, by their degree of connectivity and centrality, or by their habitat suitability for the disease, described by their reproduction number (R). Here we introduce a model that considers simultaneously the effects of network properties and R on superspreaders, as opposed to previous research which considered each factor separately. This type of model is applicable to diseases for which habitat suitability varies by climate or land cover, and for direct transmitted diseases for which population density and mitigation practices influences R. We present analytical models that quantify the superspreader capacity of a population node by two measures: probability-dependent superspreader capacity, the expected number of neighboring nodes to which the node in consideration will randomly spread the disease per epidemic generation, and time-dependent superspreader capacity, the rate at which the node spreads the disease to each of its neighbors. We validate our analytical models with a Monte Carlo analysis of repeated stochastic Susceptible-Infected-Recovered (SIR) simulations on randomly generated human population networks, and we use a random forest statistical model to relate superspreader risk to connectivity, R, centrality, clustering, and diffusion. We demonstrate that either degree of connectivity or R above a certain threshold are sufficient conditions for a node to have a moderate superspreader risk factor, but both are necessary for a node to have a high-risk factor. The statistical model presented in this article can be used to predict the location of superspreader events in future epidemics, and to predict the effectiveness of mitigation strategies that seek to reduce the value of R, alter host movements, or both.Author summary: Infectious disease outbreaks on human mobility networks often are driven by a small number of superspreader individuals or communities, which are primarily responsible for propagating the disease throughout the network. In this paper, we introduce a model that considers how the properties of the network and spatial variance in disease transmission intensity (i.e., the reproduction number) due to social and ecological conditions interact to influence the occurrence of superspreaders. This type of model is applicable to diseases for which habitat suitability is influenced by climate or land cover, such as vector-borne diseases, and to directly transmitted diseases for which population density and practices to mitigate transmission may vary spatially. We present mathematical models that quantify the superspreader capacity of a population node, based on the extent area of the disease spread attributable to that node and the rate at which the disease spreads. We validate our models with a simulation of epidemic spread across randomly generated networks. The statistical model presented here can be used to predict the location of superspreader events in future epidemics and to predict the effectiveness of mitigation strategies that seek to reduce the disease reproduction rate, alter host movements, or both.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008674 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 08674&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1008674

DOI: 10.1371/journal.pcbi.1008674

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1008674