Principles for data analysis workflows
Sara Stoudt,
Váleri N Vásquez and
Ciera C Martinez
PLOS Computational Biology, 2021, vol. 17, issue 3, 1-26
Abstract:
A systematic and reproducible “workflow”—the process that moves a scientific investigation from raw data to coherent research question to insightful contribution—should be a fundamental part of academic data-intensive research practice. In this paper, we elaborate basic principles of a reproducible data analysis workflow by defining 3 phases: the Explore, Refine, and Produce Phases. Each phase is roughly centered around the audience to whom research decisions, methodologies, and results are being immediately communicated. Importantly, each phase can also give rise to a number of research products beyond traditional academic publications. Where relevant, we draw analogies between design principles and established practice in software development. The guidance provided here is not intended to be a strict rulebook; rather, the suggestions for practices and tools to advance reproducible, sound data-intensive analysis may furnish support for both students new to research and current researchers who are new to data-intensive work.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008770 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 08770&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1008770
DOI: 10.1371/journal.pcbi.1008770
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().