Transcriptional bursts explain autosomal random monoallelic expression and affect allelic imbalance
Anton J M Larsson,
Christoph Ziegenhain,
Michael Hagemann-Jensen,
Björn Reinius,
Tina Jacob,
Tim Dalessandri,
Gert-Jan Hendriks,
Maria Kasper and
Rickard Sandberg
PLOS Computational Biology, 2021, vol. 17, issue 3, 1-16
Abstract:
Transcriptional bursts render substantial biological noise in cellular transcriptomes. Here, we investigated the theoretical extent of allelic expression resulting from transcriptional bursting and how it compared to the amount biallelic, monoallelic and allele-biased expression observed in single-cell RNA-sequencing (scRNA-seq) data. We found that transcriptional bursting can explain the allelic expression patterns observed in single cells, including the frequent observations of autosomal monoallelic gene expression. Importantly, we identified that the burst frequency largely determined the fraction of cells with monoallelic expression, whereas the burst size had little effect on monoallelic observations. The high consistency between the bursting model predictions and scRNA-seq observations made it possible to assess the heterogeneity of a group of cells as their deviation in allelic observations from the expected. Finally, both burst frequency and size contributed to allelic imbalance observations and reinforced that studies of allelic imbalance can be confounded from the inherent noise in transcriptional bursting. Altogether, we demonstrate that allele-level transcriptional bursting renders widespread, although predictable, amounts of monoallelic and biallelic expression in single cells and cell populations.Author summary: Genes are transcribed into RNA and further translated into proteins. The maternal and paternal copy of each gene are typically transcribed independently, and transcription itself occur in discrete stochastic bursts (transcriptional bursts). Pioneering single-cell analysis of RNA across cells revealed abundant fluctuations in the amounts of maternal and paternal RNA in cells, with frequent observations of RNA from only the maternal or paternal gene copy (monoallelic expression). In this study, we investigated to which extent the observed monoallelic expression across single cells can be explained by transcriptional bursting. We demonstrate that the process of transcriptional bursting is sufficient to explain the amount of monoallelic expression, and we further demonstrate that the frequency of bursts mainly determines the frequency of monoallelic observations. Furthermore, we show that transcriptional bursts may lead to false positive observations of monoallelic expression across cell populations. Therefore, stochastic transcription renders large fluctuations in allelic origin of RNA in cells over time, including frequent monoallelic observations when profiling single cells.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008772 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 08772&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1008772
DOI: 10.1371/journal.pcbi.1008772
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().