EconPapers    
Economics at your fingertips  
 

Extended graphical lasso for multiple interaction networks for high dimensional omics data

Yang Xu, Hongmei Jiang and Wenxin Jiang

PLOS Computational Biology, 2021, vol. 17, issue 10, 1-20

Abstract: There has been a spate of interest in association networks in biological and medical research, for example, genetic interaction networks. In this paper, we propose a novel method, the extended joint hub graphical lasso (EDOHA), to estimate multiple related interaction networks for high dimensional omics data across multiple distinct classes. To be specific, we construct a convex penalized log likelihood optimization problem and solve it with an alternating direction method of multipliers (ADMM) algorithm. The proposed method can also be adapted to estimate interaction networks for high dimensional compositional data such as microbial interaction networks. The performance of the proposed method in the simulated studies shows that EDOHA has remarkable advantages in recognizing class-specific hubs than the existing comparable methods. We also present three applications of real datasets. Biological interpretations of our results confirm those of previous studies and offer a more comprehensive understanding of the underlying mechanism in disease.Author summary: Reconstruction of multiple association networks from high dimensional omics data is an important topic, especially in biology. Previous studies focused on estimating different networks and detecting common hubs among all classes. Integration of information over different classes of data while allowing the difference in the hub nodes is also biologically plausible. Therefore, we propose a method, EDOHA, to jointly construct multiple interaction networks with the capacity in finding different hub networks for each class of data. Simulation studies show better performance over conventional methods. The method has been demonstrated in three real-world data.

Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008794 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 08794&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1008794

DOI: 10.1371/journal.pcbi.1008794

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1008794