Prediction of amphipathic helix—Membrane interactions with Rosetta
Alican Gulsevin and
Jens Meiler
PLOS Computational Biology, 2021, vol. 17, issue 3, 1-25
Abstract:
Amphipathic helices have hydrophobic and hydrophilic/charged residues situated on oppo site faces of the helix. They can anchor peripheral membrane proteins to the membrane, be attached to integral membrane proteins, or exist as independent peptides. Despite the widespread presence of membrane-interacting amphipathic helices, there is no computational tool within Rosetta to model their interactions with membranes. In order to address this need, we developed the AmphiScan protocol with PyRosetta, which runs a grid search to find the most favorable position of an amphipathic helix with respect to the membrane. The performance of the algorithm was tested in benchmarks with the RosettaMembrane, ref2015_memb, and franklin2019 score functions on six engineered and 44 naturally-occurring amphipathic helices using membrane coordinates from the OPM and PDBTM databases, OREMPRO server, and MD simulations for comparison. The AmphiScan protocol predicted the coordinates of amphipathic helices within less than 3Å of the reference structures and identified membrane-embedded residues with a Matthews Correlation Constant (MCC) of up to 0.57. Overall, AmphiScan stands as fast, accurate, and highly-customizable protocol that can be pipelined with other Rosetta and Python applications.Author summary: Amphipathic helices are important targets as antibacterial peptides and as domains of membrane proteins that play a role in sensing the membrane environment. Understanding how amphipathic helices interact with membrane enables us to design better peptides and understand how membrane proteins use them to interact with their environment. However, there is a limited number of tools available for the modeling of amphipathic helices in membranes. Implicit membrane models can be used for this purpose as simplistic representations of the membrane environment. In this work, we developed the AmphiScan protocol that can be used to predict membrane coordinates of amphipathic helices starting with a helix structure in an implicit membrane environment. We benchmarked the performance of AmphiScan on engineered LK peptides, naturally-occurring amphipathic helices, and hydrophobic and hydrophilic peptides. Our approach provides a reliable and customizable tool to model amphipathic helix–membrane interactions, and pose a platform for the screening of amphipathic helix properties in silico.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008818 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 08818&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1008818
DOI: 10.1371/journal.pcbi.1008818
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().