Fine scale prediction of ecological community composition using a two-step sequential Machine Learning ensemble
Icíar Civantos-Gómez,
Javier García-Algarra,
David García-Callejas,
Javier Galeano,
Oscar Godoy and
Ignasi Bartomeus
PLOS Computational Biology, 2021, vol. 17, issue 12, 1-20
Abstract:
Prediction is one of the last frontiers in ecology. Indeed, predicting fine-scale species composition in natural systems is a complex challenge as multiple abiotic and biotic processes operate simultaneously to determine local species abundances. On the one hand, species intrinsic performance and their tolerance limits to different abiotic pressures modulate species abundances. On the other hand, there is growing recognition that species interactions play an equally important role in limiting or promoting such abundances within ecological communities. Here, we present a joint effort between ecologists and data scientists to use data-driven models to predict species abundances using reasonably easy to obtain data. We propose a sequential data-driven modeling approach that in a first step predicts the potential species abundances based on abiotic variables, and in a second step uses these predictions to model the realized abundances once accounting for species competition. Using a curated data set over five years we predict fine-scale species abundances in a highly diverse annual plant community. Our models show a remarkable spatial predictive accuracy using only easy-to-measure variables in the field, yet such predictive power is lost when temporal dynamics are taken into account. This result suggests that predicting future abundances requires longer time series analysis to capture enough variability. In addition, we show that these data-driven models can also suggest how to improve mechanistic models by adding missing variables that affect species performance such as particular soil conditions (e.g. carbonate availability in our case). Robust models for predicting fine-scale species composition informed by the mechanistic understanding of the underlying abiotic and biotic processes can be a pivotal tool for conservation, especially given the human-induced rapid environmental changes we are experiencing. This objective can be achieved by promoting the knowledge gained with classic modelling approaches in ecology and recently developed data-driven models.Author summary: Prediction is challenging but recently developed Machine Learning techniques allow to dramatically improve prediction accuracy in several domains. However, these tools are often of little application in ecology due to the hardship of gathering information on the needed explanatory variables, which often comprise not only physical variables such as temperature or soil nutrients, but also information about the complex network of species interactions that modulate species abundances. Here we present a two-step sequential modelling framework that overcomes these constraints. We first infer potential species abundances by training models just with easily obtained abiotic variables and then use this outcome to fine-tune the prediction of the realized species abundances when taking into account the rest of the predicted species in the community. Overall, our results show a promising way forward for fine scale prediction in ecology.
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008906 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 08906&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1008906
DOI: 10.1371/journal.pcbi.1008906
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().