WormPose: Image synthesis and convolutional networks for pose estimation in C. elegans
Laetitia Hebert,
Tosif Ahamed,
Antonio C Costa,
Liam O’Shaughnessy and
Greg J Stephens
PLOS Computational Biology, 2021, vol. 17, issue 4, 1-20
Abstract:
An important model system for understanding genes, neurons and behavior, the nematode worm C. elegans naturally moves through a variety of complex postures, for which estimation from video data is challenging. We introduce an open-source Python package, WormPose, for 2D pose estimation in C. elegans, including self-occluded, coiled shapes. We leverage advances in machine vision afforded from convolutional neural networks and introduce a synthetic yet realistic generative model for images of worm posture, thus avoiding the need for human-labeled training. WormPose is effective and adaptable for imaging conditions across worm tracking efforts. We quantify pose estimation using synthetic data as well as N2 and mutant worms in on-food conditions. We further demonstrate WormPose by analyzing long (∼ 8 hour), fast-sampled (∼ 30 Hz) recordings of on-food N2 worms to provide a posture-scale analysis of roaming/dwelling behaviors.Author summary: Recent advances in machine learning have enabled the high-resolution estimation of bodypoint positions of freely behaving animals, but manual labeling can render these methods imprecise and impractical, especially in highly deformable animals such as the nematode C. elegans. Such animals also frequently coil, resulting in complicated shapes whose ambiguity presents difficulties for standard pose estimation methods. Efficiently solving coiled shapes in C. elegans, exhibited in a variety of important natural contexts, is the primary limiting factor for fully automated high-throughput behavior analysis. WormPose provides pose estimation that works across imaging conditions, naturally complements existing worm trackers, and harnesses the power of deep convolutional networks but with an image generator to automatically provide precise image-centerline pairings for training. We apply WormPose to on-food recordings, finding a near absence of deep δ-turns. We also show that incoherent body motions in the dwell state, which do not translate the worm, have been misidentified as an increase in reversal rate by previous, centroid-based methods. We expect that the combination of a body model and image synthesis demonstrated in WormPose will be both of general interest and important for future progress in precise pose estimation in other slender-bodied and deformable organisms.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008914 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 08914&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1008914
DOI: 10.1371/journal.pcbi.1008914
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().