BIO-LGCA: A cellular automaton modelling class for analysing collective cell migration
Andreas Deutsch,
Josué Manik Nava-Sedeño,
Simon Syga and
Haralampos Hatzikirou
PLOS Computational Biology, 2021, vol. 17, issue 6, 1-22
Abstract:
Collective dynamics in multicellular systems such as biological organs and tissues plays a key role in biological development, regeneration, and pathological conditions. Collective tissue dynamics—understood as population behaviour arising from the interplay of the constituting discrete cells—can be studied with on- and off-lattice agent-based models. However, classical on-lattice agent-based models, also known as cellular automata, fail to replicate key aspects of collective migration, which is a central instance of collective behaviour in multicellular systems. To overcome drawbacks of classical on-lattice models, we introduce an on-lattice, agent-based modelling class for collective cell migration, which we call biological lattice-gas cellular automaton (BIO-LGCA). The BIO-LGCA is characterised by synchronous time updates, and the explicit consideration of individual cell velocities. While rules in classical cellular automata are typically chosen ad hoc, rules for cell-cell and cell-environment interactions in the BIO-LGCA can also be derived from experimental cell migration data or biophysical laws for individual cell migration. We introduce elementary BIO-LGCA models of fundamental cell interactions, which may be combined in a modular fashion to model complex multicellular phenomena. We exemplify the mathematical mean-field analysis of specific BIO-LGCA models, which allows to explain collective behaviour. The first example predicts the formation of clusters in adhesively interacting cells. The second example is based on a novel BIO-LGCA combining adhesive interactions and alignment. For this model, our analysis clarifies the nature of the recently discovered invasion plasticity of breast cancer cells in heterogeneous environments.Author summary: Pattern formation during embryonic development and pathological tissue dynamics, such as cancer invasion, emerge from individual inter-cellular interactions. In order to study the impact of single cell dynamics and cell-cell interactions on tissue behaviour, one needs to develop space-time-dependent on- or off-lattice agent-based models (ABMs), which consider the behaviour of individual cells. However, classical on-lattice agent-based models also known as cellular automata fail to replicate key aspects of collective migration, which is a central instance of collective behaviour in multicellular systems. Here, we present the rule- and lattice-based BIO-LGCA modelling class which allows for (i) rigorous derivation of rules from biophysical laws and/or experimental data, (ii) mathematical analysis of collective migration, and (iii) computationally efficient simulations.
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009066 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 09066&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1009066
DOI: 10.1371/journal.pcbi.1009066
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().