EconPapers    
Economics at your fingertips  
 

Trip duration drives shift in travel network structure with implications for the predictability of spatial disease spread

John R Giles, Derek AT Cummings, Bryan T Grenfell, Andrew J Tatem, Elisabeth zu Erbach-Schoenberg, Metcalf Cje and Amy Wesolowski

PLOS Computational Biology, 2021, vol. 17, issue 8, 1-24

Abstract: Human travel is one of the primary drivers of infectious disease spread. Models of travel are often used that assume the amount of travel to a specific destination decreases as cost of travel increases with higher travel volumes to more populated destinations. Trip duration, the length of time spent in a destination, can also impact travel patterns. We investigated the spatial patterns of travel conditioned on trip duration and find distinct differences between short and long duration trips. In short-trip duration travel networks, trips are skewed towards urban destinations, compared with long-trip duration networks where travel is more evenly spread among locations. Using gravity models to inform connectivity patterns in simulations of disease transmission, we show that pathogens with shorter generation times exhibit initial patterns of spatial propagation that are more predictable among urban locations. Further, pathogens with a longer generation time have more diffusive patterns of spatial spread reflecting more unpredictable disease dynamics.Author summary: During an epidemic of an infectious pathogen, cases of disease can be imported to new locations when people travel. The amount of time that an infected person spends in a destination (trip duration) determines how likely they are to infect others while travelling. In this study, we analyzed travel data and found specific spatial patterns in trip duration, where short-duration trips are more common between urban destinations and long-duration trips are evenly spread out among locations. To show how this spatial pattern impacts the spread of infectious diseases, we used data-driven models and simulations to show that pathogens with shorter generation times have patterns of spatial spread that are more predictable among urban locations. However, pathogens with longer generation times tend to spread along the long-duration travel networks that are more evenly distributed among locations giving them more unpredictable disease dynamics.

Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009127 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 09127&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1009127

DOI: 10.1371/journal.pcbi.1009127

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1009127