EconPapers    
Economics at your fingertips  
 

Evaluation and comparison of multi-omics data integration methods for cancer subtyping

Ran Duan, Lin Gao, Yong Gao, Yuxuan Hu, Han Xu, Mingfeng Huang, Kuo Song, Hongda Wang, Yongqiang Dong, Chaoqun Jiang, Chenxing Zhang and Songwei Jia

PLOS Computational Biology, 2021, vol. 17, issue 8, 1-33

Abstract: Computational integrative analysis has become a significant approach in the data-driven exploration of biological problems. Many integration methods for cancer subtyping have been proposed, but evaluating these methods has become a complicated problem due to the lack of gold standards. Moreover, questions of practical importance remain to be addressed regarding the impact of selecting appropriate data types and combinations on the performance of integrative studies. Here, we constructed three classes of benchmarking datasets of nine cancers in TCGA by considering all the eleven combinations of four multi-omics data types. Using these datasets, we conducted a comprehensive evaluation of ten representative integration methods for cancer subtyping in terms of accuracy measured by combining both clustering accuracy and clinical significance, robustness, and computational efficiency. We subsequently investigated the influence of different omics data on cancer subtyping and the effectiveness of their combinations. Refuting the widely held intuition that incorporating more types of omics data always produces better results, our analyses showed that there are situations where integrating more omics data negatively impacts the performance of integration methods. Our analyses also suggested several effective combinations for most cancers under our studies, which may be of particular interest to researchers in omics data analysis.Author summary: Cancer is one of the most heterogeneous diseases, characterized by diverse morphological, phenotypic, and genomic profiles between tumors and their subtypes. Identifying cancer subtypes can help patients receive precise treatments. With the development of high-throughput technologies, genomics, epigenomics, and transcriptomics data have been generated for large cancer patient cohorts. It is believed that the more omics data we use, the more accurate identification of cancer subtypes. To examine this assumption, we first constructed three classes of benchmarking datasets to conduct a comprehensive evaluation and comparison of ten representative multi-omics data integration methods for cancer subtyping by considering their accuracy, robustness, and computational efficiency. Then, we investigated the influence of different omics data and their various combinations on the effectiveness of cancer subtyping. Our analyses showed that there are situations where integrating more omics data negatively impacts the performance of integration methods. We hope that our work may help researchers choose a proper method and an effective data combination when identifying cancer subtypes using data integration methods.

Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009224 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 09224&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1009224

DOI: 10.1371/journal.pcbi.1009224

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1009224