Unveiling functions of the visual cortex using task-specific deep neural networks
Kshitij Dwivedi,
Michael F Bonner,
Radoslaw Martin Cichy and
Gemma Roig
PLOS Computational Biology, 2021, vol. 17, issue 8, 1-22
Abstract:
The human visual cortex enables visual perception through a cascade of hierarchical computations in cortical regions with distinct functionalities. Here, we introduce an AI-driven approach to discover the functional mapping of the visual cortex. We related human brain responses to scene images measured with functional MRI (fMRI) systematically to a diverse set of deep neural networks (DNNs) optimized to perform different scene perception tasks. We found a structured mapping between DNN tasks and brain regions along the ventral and dorsal visual streams. Low-level visual tasks mapped onto early brain regions, 3-dimensional scene perception tasks mapped onto the dorsal stream, and semantic tasks mapped onto the ventral stream. This mapping was of high fidelity, with more than 60% of the explainable variance in nine key regions being explained. Together, our results provide a novel functional mapping of the human visual cortex and demonstrate the power of the computational approach.Author summary: Human visual perception is a complex cognitive feat known to be mediated by distinct cortical regions of the brain. However, the exact function of these regions remains unknown, and thus it remains unclear how those regions together orchestrate visual perception. Here, we apply an AI-driven brain mapping approach to reveal visual brain function. This approach integrates multiple artificial deep neural networks trained on a diverse set of functions with functional recordings of the whole human brain. Our results reveal a systematic tiling of visual cortex by mapping regions to particular functions of the deep networks. Together this constitutes a comprehensive account of the functions of the distinct cortical regions of the brain that mediate human visual perception.
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009267 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 09267&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1009267
DOI: 10.1371/journal.pcbi.1009267
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().