EconPapers    
Economics at your fingertips  
 

Numerical approaches for the rapid analysis of prophylactic efficacy against HIV with arbitrary drug-dosing schemes

Lanxin Zhang, Junyu Wang and Max von Kleist

PLOS Computational Biology, 2021, vol. 17, issue 12, 1-24

Abstract: Pre-exposure prophylaxis (PrEP) is an important pillar to prevent HIV transmission. Because of experimental and clinical shortcomings, mathematical models that integrate pharmacological, viral- and host factors are frequently used to quantify clinical efficacy of PrEP. Stochastic simulations of these models provides sample statistics from which the clinical efficacy is approximated. However, many stochastic simulations are needed to reduce the associated sampling error. To remedy the shortcomings of stochastic simulation, we developed a numerical method that allows predicting the efficacy of arbitrary prophylactic regimen directly from a viral dynamics model, without sampling. We apply the method to various hypothetical dolutegravir (DTG) prophylaxis scenarios. The approach is verified against state-of-the-art stochastic simulation. While the method is more accurate than stochastic simulation, it is superior in terms of computational performance. For example, a continuous 6-month prophylactic profile is computed within a few seconds on a laptop computer. The method’s computational performance, therefore, substantially expands the horizon of feasible analysis in the context of PrEP, and possibly other applications.Author summary: Pre-exposure prophylaxis (PrEP) is an important tool to prevent HIV transmission. However, experimental identification of parameters that determine prophylactic efficacy is extremely difficult. Clues about these parameters could prove essential for the design of next-generation PrEP compounds. Integrative mathematical models can fill this void: Based on stochastic simulation, a sample statistic can be generated, from which the prophylactic efficacy is estimated. However, for this sample statistic to be accurate, many simulations need to be performed.

Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009295 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 09295&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1009295

DOI: 10.1371/journal.pcbi.1009295

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1009295