EconPapers    
Economics at your fingertips  
 

Enhancing oscillations in intracranial electrophysiological recordings with data-driven spatial filters

Natalie Schaworonkow and Bradley Voytek

PLOS Computational Biology, 2021, vol. 17, issue 8, 1-29

Abstract: In invasive electrophysiological recordings, a variety of neural oscillations can be detected across the cortex, with overlap in space and time. This overlap complicates measurement of neural oscillations using standard referencing schemes, like common average or bipolar referencing. Here, we illustrate the effects of spatial mixing on measuring neural oscillations in invasive electrophysiological recordings and demonstrate the benefits of using data-driven referencing schemes in order to improve measurement of neural oscillations. We discuss referencing as the application of a spatial filter. Spatio-spectral decomposition is used to estimate data-driven spatial filters, a computationally fast method which specifically enhances signal-to-noise ratio for oscillations in a frequency band of interest. We show that application of these data-driven spatial filters has benefits for data exploration, investigation of temporal dynamics and assessment of peak frequencies of neural oscillations. We demonstrate multiple use cases, exploring between-participant variability in presence of oscillations, spatial spread and waveform shape of different rhythms as well as narrowband noise removal with the aid of spatial filters. We find high between-participant variability in the presence of neural oscillations, a large variation in spatial spread of individual rhythms and many non-sinusoidal rhythms across the cortex. Improved measurement of cortical rhythms will yield better conditions for establishing links between cortical activity and behavior, as well as bridging scales between the invasive intracranial measurements and noninvasive macroscale scalp measurements.Author summary: Invasive electrophysiological recordings of human brain activity offer the unique ability to measure multiple, simultaneously active brain rhythms. Analyzing brain rhythms is complex due to the fact that different oscillations often overlap in space and time. Here we explore human resting state invasive electrophysiological recordings by using spatial filters, which combine information from all available recording electrodes to specifically extract oscillations with high signal to noise ratio. Using this technique, we explore variability in oscillation presence across subjects, the spatial spread and waveform shape of oscillations. We find that participants differ a lot in presence of oscillations, even when the recording electrodes have similar placement. We find that oscillations exhibit spatial spread exceeding the distance between electrodes and that the waveform shape of oscillations in different brain regions can be highly deviating from a sine wave.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009298 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 09298&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1009298

DOI: 10.1371/journal.pcbi.1009298

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1009298