Estimating repeat spectra and genome length from low-coverage genome skims with RESPECT
Shahab Sarmashghi,
Metin Balaban,
Eleonora Rachtman,
Behrouz Touri,
Siavash Mirarab and
Vineet Bafna
PLOS Computational Biology, 2021, vol. 17, issue 11, 1-23
Abstract:
The cost of sequencing the genome is dropping at a much faster rate compared to assembling and finishing the genome. The use of lightly sampled genomes (genome-skims) could be transformative for genomic ecology, and results using k-mers have shown the advantage of this approach in identification and phylogenetic placement of eukaryotic species. Here, we revisit the basic question of estimating genomic parameters such as genome length, coverage, and repeat structure, focusing specifically on estimating the k-mer repeat spectrum. We show using a mix of theoretical and empirical analysis that there are fundamental limitations to estimating the k-mer spectra due to ill-conditioned systems, and that has implications for other genomic parameters. We get around this problem using a novel constrained optimization approach (Spline Linear Programming), where the constraints are learned empirically. On reads simulated at 1X coverage from 66 genomes, our method, REPeat SPECTra Estimation (RESPECT), had 2.2% error in length estimation compared to 27% error previously achieved. In shotgun sequenced read samples with contaminants, RESPECT length estimates had median error 4%, in contrast to other methods that had median error 80%. Together, the results suggest that low-pass genomic sequencing can yield reliable estimates of the length and repeat content of the genome. The RESPECT software will be publicly available at https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_shahab-2Dsarmashghi_RESPECT.git&d=DwIGAw&c=-35OiAkTchMrZOngvJPOeA&r=ZozViWvD1E8PorCkfwYKYQMVKFoEcqLFm4Tg49XnPcA&m=f-xS8GMHKckknkc7Xpp8FJYw_ltUwz5frOw1a5pJ81EpdTOK8xhbYmrN4ZxniM96&s=717o8hLR1JmHFpRPSWG6xdUQTikyUjicjkipjFsKG4w&e=.Author summary: The cost of sequencing the genome is dropping at a much faster rate compared to assembling and finishing the genome. The use of lightly sampled genomes (genome skims) could be transformative for genomic ecology. Analyzing genome skims, mostly based on statistics of small oligomers, remains challenging, but recent results have shown the advantage of this approach for the identification and phylogenetic placement of eukaryotic species. In this paper, we present a method, RESPECT, to estimate genomic properties such as genome length and repetitiveness from low-coverage genome skims. We trained RESPECT using assembled genomes and tested it on low-coverage simulated and real reads. Benchmarking results reveal that RESPECT has excellent accuracy in estimating the genome length compared to other methods, and can provide critical information regarding the repeat structure of the genome.
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009449 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 09449&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1009449
DOI: 10.1371/journal.pcbi.1009449
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().