Choice history effects in mice and humans improve reward harvesting efficiency
Samuel López-Yépez Junior,
Juliane Martin,
Oliver Hulme and
Duda Kvitsiani
PLOS Computational Biology, 2021, vol. 17, issue 10, 1-33
Abstract:
Choice history effects describe how future choices depend on the history of past choices. In experimental tasks this is typically framed as a bias because it often diminishes the experienced reward rates. However, in natural habitats, choices made in the past constrain choices that can be made in the future. For foraging animals, the probability of earning a reward in a given patch depends on the degree to which the animals have exploited the patch in the past. One problem with many experimental tasks that show choice history effects is that such tasks artificially decouple choice history from its consequences on reward availability over time. To circumvent this, we use a variable interval (VI) reward schedule that reinstates a more natural contingency between past choices and future reward availability. By examining the behavior of optimal agents in the VI task we discover that choice history effects observed in animals serve to maximize reward harvesting efficiency. We further distil the function of choice history effects by manipulating first- and second-order statistics of the environment. We find that choice history effects primarily reflect the growth rate of the reward probability of the unchosen option, whereas reward history effects primarily reflect environmental volatility. Based on observed choice history effects in animals, we develop a reinforcement learning model that explicitly incorporates choice history over multiple time scales into the decision process, and we assess its predictive adequacy in accounting for the associated behavior. We show that this new variant, known as the double trace model, has a higher performance in predicting choice data, and shows near optimal reward harvesting efficiency in simulated environments. These results suggests that choice history effects may be adaptive for natural contingencies between consumption and reward availability. This concept lends credence to a normative account of choice history effects that extends beyond its description as a bias.Author summary: Animals foraging for food in natural habitats compete to obtain better quality food patches. To achieve this goal, animals can rely on memory and choose the same patches that have provided higher quality of food in the past. However, in natural habitats simply identifying better food patches may not be sufficient to successfully compete with their conspecifics, as food resources can grow over time. Therefore, it makes sense to visit from time to time those patches that were associated with lower food quality in the past. This demands optimal foraging animals to keep in memory not only which food patches provided the best food quality, but also which food patches they visited recently. To see if animals track their history of visits and use it to maximize the food harvesting efficiency, we subjected them to experimental conditions that mimicked natural foraging behavior. In our behavioral tasks, we replaced food foraging behavior with a two choice task that provided rewards to mice and humans. By developing a new computational model and subjecting animals to various behavioral manipulations, we demonstrate that keeping a memory of past visits helps the animals to optimize the efficiency with which they can harvest rewards.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009452 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 09452&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1009452
DOI: 10.1371/journal.pcbi.1009452
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().