Cortical feedback and gating in odor discrimination and generalization
Gaia Tavoni,
David E Chen Kersen and
Vijay Balasubramanian
PLOS Computational Biology, 2021, vol. 17, issue 10, 1-35
Abstract:
A central question in neuroscience is how context changes perception. In the olfactory system, for example, experiments show that task demands can drive divergence and convergence of cortical odor responses, likely underpinning olfactory discrimination and generalization. Here, we propose a simple statistical mechanism for this effect based on unstructured feedback from the central brain to the olfactory bulb, which represents the context associated with an odor, and sufficiently selective cortical gating of sensory inputs. Strikingly, the model predicts that both convergence and divergence of cortical odor patterns should increase when odors are initially more similar, an effect reported in recent experiments. The theory in turn predicts reversals of these trends following experimental manipulations and in neurological conditions that increase cortical excitability.Author summary: Contextual information can powerfully influence the neural representation and perception of sensory stimuli. Here, we propose a mechanism, based on unstructured feedback from the central brain to the sensory periphery, by which similar and different contexts lead to characteristic trends in convergence and divergence of cortical odor responses that are critically dependent on threshold to firing of cortical cells. The analysis predicts specific deficits in context-driven olfactory perceptual discrimination in neurological conditions of high cortical excitability, such as Alzheimer’s disease.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009479 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 09479&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1009479
DOI: 10.1371/journal.pcbi.1009479
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().