Dose-dependent thresholds of dexamethasone destabilize CAR T-cell treatment efficacy
Alexander B Brummer,
Xin Yang,
Eric Ma,
Margarita Gutova,
Christine E Brown and
Russell C Rockne
PLOS Computational Biology, 2022, vol. 18, issue 1, 1-22
Abstract:
Chimeric antigen receptor (CAR) T-cell therapy is potentially an effective targeted immunotherapy for glioblastoma, yet there is presently little known about the efficacy of CAR T-cell treatment when combined with the widely used anti-inflammatory and immunosuppressant glucocorticoid, dexamethasone. Here we present a mathematical model-based analysis of three patient-derived glioblastoma cell lines treated in vitro with CAR T-cells and dexamethasone. Advanced in vitro experimental cell killing assay technologies allow for highly resolved temporal dynamics of tumor cells treated with CAR T-cells and dexamethasone, making this a valuable model system for studying the rich dynamics of nonlinear biological processes with translational applications. We model the system as a nonautonomous, two-species predator-prey interaction of tumor cells and CAR T-cells, with explicit time-dependence in the clearance rate of dexamethasone. Using time as a bifurcation parameter, we show that (1) dexamethasone destabilizes coexistence equilibria between CAR T-cells and tumor cells in a dose-dependent manner and (2) as dexamethasone is cleared from the system, a stable coexistence equilibrium returns in the form of a Hopf bifurcation. With the model fit to experimental data, we demonstrate that high concentrations of dexamethasone antagonizes CAR T-cell efficacy by exhausting, or reducing the activity of CAR T-cells, and by promoting tumor cell growth. Finally, we identify a critical threshold in the ratio of CAR T-cell death to CAR T-cell proliferation rates that predicts eventual treatment success or failure that may be used to guide the dose and timing of CAR T-cell therapy in the presence of dexamethasone in patients.Author summary: Bioengineering and gene-editing technologies have paved the way for advance immunotherapies that can target patient-specific tumor cells. One of these therapies, chimeric antigen receptor (CAR) T-cell therapy has recently shown promise in treating glioblastoma, an aggressive brain cancer often with poor patient prognosis. Dexamethasone is a commonly prescribed anti-inflammatory medication due to the health complications of tumor associated swelling in the brain. However, the immunosuppressant effects of dexamethasone on the immunotherapeutic CAR T-cells are not well understood. To address this issue, we use mathematical modeling to study in vitro dynamics of dexamethasone and CAR T-cells in three patient-derived glioblastoma cell lines. We find that in each cell line studied there is a threshold of tolerable dexamethasone concentration. Below this threshold, CAR T-cells are successful at eliminating the cancer cells, while above this threshold, dexamethasone critically inhibits CAR T-cell efficacy. Our modeling suggests that in the presence of high dexamethasone reduced CAR T-cell efficacy, or increased exhaustion, can occur and result in CAR T-cell treatment failure.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009504 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 09504&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1009504
DOI: 10.1371/journal.pcbi.1009504
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().