Learning as filtering: Implications for spike-based plasticity
Jannes Jegminat,
Simone Carlo Surace and
Jean-Pascal Pfister
PLOS Computational Biology, 2022, vol. 18, issue 2, 1-23
Abstract:
Most normative models in computational neuroscience describe the task of learning as the optimisation of a cost function with respect to a set of parameters. However, learning as optimisation fails to account for a time-varying environment during the learning process and the resulting point estimate in parameter space does not account for uncertainty. Here, we frame learning as filtering, i.e., a principled method for including time and parameter uncertainty. We derive the filtering-based learning rule for a spiking neuronal network—the Synaptic Filter—and show its computational and biological relevance. For the computational relevance, we show that filtering improves the weight estimation performance compared to a gradient learning rule with optimal learning rate. The dynamics of the mean of the Synaptic Filter is consistent with spike-timing dependent plasticity (STDP) while the dynamics of the variance makes novel predictions regarding spike-timing dependent changes of EPSP variability. Moreover, the Synaptic Filter explains experimentally observed negative correlations between homo- and heterosynaptic plasticity.Author summary: The task of learning is commonly framed as parameter optimisation. Here, we adopt the framework of learning as filtering where the task is to continuously estimate the uncertainty about the parameters to be learned. We apply this framework to synaptic plasticity in a spiking neuronal network. Filtering includes a time-varying environment and parameter uncertainty on the level of the learning task. We show that learning as filtering can qualitatively explain two biological experiments on synaptic plasticity that cannot be explained by learning as optimisation. Moreover, we make a new prediction and improve performance with respect to a gradient learning rule. Thus, learning as filtering is a promising candidate for learning models.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009721 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 09721&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1009721
DOI: 10.1371/journal.pcbi.1009721
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().