EconPapers    
Economics at your fingertips  
 

CRBPDL: Identification of circRNA-RBP interaction sites using an ensemble neural network approach

Mengting Niu, Quan Zou and Chen Lin

PLOS Computational Biology, 2022, vol. 18, issue 1, 1-17

Abstract: Circular RNAs (circRNAs) are non-coding RNAs with a special circular structure produced formed by the reverse splicing mechanism. Increasing evidence shows that circular RNAs can directly bind to RNA-binding proteins (RBP) and play an important role in a variety of biological activities. The interactions between circRNAs and RBPs are key to comprehending the mechanism of posttranscriptional regulation. Accurately identifying binding sites is very useful for analyzing interactions. In past research, some predictors on the basis of machine learning (ML) have been presented, but prediction accuracy still needs to be ameliorated. Therefore, we present a novel calculation model, CRBPDL, which uses an Adaboost integrated deep hierarchical network to identify the binding sites of circular RNA-RBP. CRBPDL combines five different feature encoding schemes to encode the original RNA sequence, uses deep multiscale residual networks (MSRN) and bidirectional gating recurrent units (BiGRUs) to effectively learn high-level feature representations, it is sufficient to extract local and global context information at the same time. Additionally, a self-attention mechanism is employed to train the robustness of the CRBPDL. Ultimately, the Adaboost algorithm is applied to integrate deep learning (DL) model to improve prediction performance and reliability of the model. To verify the usefulness of CRBPDL, we compared the efficiency with state-of-the-art methods on 37 circular RNA data sets and 31 linear RNA data sets. Moreover, results display that CRBPDL is capable of performing universal, reliable, and robust. The code and data sets are obtainable at https://github.com/nmt315320/CRBPDL.git.Author summary: More and more evidences show that circular RNA can directly bind to proteins and participate in countless different biological processes. The calculation method can quickly and accurately predict the binding site of circular RNA and RBP. In order to identify the interaction of circRNA with 37 different types of circRNA binding proteins, we developed an integrated deep learning network based on hierarchical network, called CRBPDL. It can effectively learn high-level feature representations. The performance of the model was verified through comparative experiments of different feature extraction algorithms, different deep learning models and classifier models. Moreover, the CRBPDL model was applied to 31 linear RNAs, and the effectiveness of our method was proved by comparison with the results of current excellent algorithms. It is expected that the CRBPDL model can effectively predict the binding site of circular RNA-RBP and provide reliable candidates for further biological experiments.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009798 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 09798&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1009798

DOI: 10.1371/journal.pcbi.1009798

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1009798