Foraging as sampling without replacement: A Bayesian statistical model for estimating biases in target selection
Alasdair D F Clarke,
Amelia R Hunt and
Anna E Hughes
PLOS Computational Biology, 2022, vol. 18, issue 1, 1-19
Abstract:
Foraging entails finding multiple targets sequentially. In humans and other animals, a key observation has been a tendency to forage in ‘runs’ of the same target type. This tendency is context-sensitive, and in humans, it is strongest when the targets are difficult to distinguish from the distractors. Many important questions have yet to be addressed about this and other tendencies in human foraging, and a key limitation is a lack of precise measures of foraging behaviour. The standard measures tend to be run statistics, such as the maximum run length and the number of runs. But these measures are not only interdependent, they are also constrained by the number and distribution of targets, making it difficult to make inferences about the effects of these aspects of the environment on foraging. Moreover, run statistics are underspecified about the underlying cognitive processes determining foraging behaviour. We present an alternative approach: modelling foraging as a procedure of generative sampling without replacement, implemented in a Bayesian multilevel model. This allows us to break behaviour down into a number of biases that influence target selection, such as the proximity of targets and a bias for selecting targets in runs, in a way that is not dependent on the number of targets present. Our method thereby facilitates direct comparison of specific foraging tendencies between search environments that differ in theoretically important dimensions. We demonstrate the use of our model with simulation examples and re-analysis of existing data. We believe our model will provide deeper insights into visual foraging and provide a foundation for further modelling work in this area.Author summary: Foraging has been well-studied in many species that rely on widely distributed food sources, such as bees and birds. Less well understood is how humans approach foraging tasks, and whether there are general policies we can identify that describe how we search for different categories of objects that can vary in quantity and distribution. We present a way to model foraging behaviour as a generative sampling without replacement procedure, implemented in a Bayesian multilevel model. This allows us to break down behaviour into a number of independent biases that influence target selection, including the proximity of targets, a bias for selecting targets in runs and a bias for a particular target type, in a way that is not dependent on the number of targets present. We believe this tool can open the door for foraging to become a standard task for refining our understanding of attention, working memory, prospective memory, learning, planning and decision-making.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009813 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 09813&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1009813
DOI: 10.1371/journal.pcbi.1009813
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().