EconPapers    
Economics at your fingertips  
 

Near-term forecasting of companion animal tick paralysis incidence: An iterative ensemble model

Nicholas J Clark, Tatiana Proboste, Guyan Weerasinghe and Ricardo J Soares Magalhães

PLOS Computational Biology, 2022, vol. 18, issue 2, 1-20

Abstract: Tick paralysis resulting from bites from Ixodes holocyclus and I. cornuatus is one of the leading causes of emergency veterinary admissions for companion animals in Australia, often resulting in death if left untreated. Availability of timely information on periods of increased risk can help modulate behaviors that reduce exposures to ticks and improve awareness of owners for the need of lifesaving preventative ectoparasite treatment. Improved awareness of clinicians and pet owners about temporal changes in tick paralysis risk can be assisted by ecological forecasting frameworks that integrate environmental information into statistical time series models. Using an 11-year time series of tick paralysis cases from veterinary clinics in one of Australia’s hotspots for the paralysis tick Ixodes holocyclus, we asked whether an ensemble model could accurately forecast clinical caseloads over near-term horizons. We fit a series of statistical time series (ARIMA, GARCH) and generative models (Prophet, Generalised Additive Model) using environmental variables as predictors, and then combined forecasts into a weighted ensemble to minimise prediction interval error. Our results indicate that variables related to temperature anomalies, levels of vegetation moisture and the Southern Oscillation Index can be useful for predicting tick paralysis admissions. Our model forecasted tick paralysis cases with exceptional accuracy while preserving epidemiological interpretability, outperforming a field-leading benchmark Exponential Smoothing model by reducing both point and prediction interval errors. Using online particle filtering to assimilate new observations and adjust forecast distributions when new data became available, our model adapted to changing temporal conditions and provided further reduced forecast errors. We expect our model pipeline to act as a platform for developing early warning systems that can notify clinicians and pet owners about heightened risks of environmentally driven veterinary conditions.Author summary: Tick-borne illnesses constitute a diverse group of debilitating conditions for pet dogs and cats around the world. In Australia, thousands of domestic dogs are admitted to emergency veterinary clinics due to tick paralysis each year. These admissions are highly seasonal and may be associated with changing environmental conditions, suggesting models that learn from environmental patterns to forecast the oncoming tick season could inform pet owners and clinicians about changing risks. In this paper we use a series of statistical forecasting models to analyse and predict tick paralysis admissions to veterinary clinics in a tick paralysis hotspot in Queensland, Australia. Our approach is novel in that we combine individual models into a superior ensemble that is trained to reduce forecast uncertainty, giving more accurate estimates of what the coming tick season will look like. Our model consistently outperforms a field-leading benchmark while uncovering important patterns about environmental drivers of paralysis tick exposure, including changes to levels of moist vegetation and maximum temperature. We also demonstrate how our model can be used to automatically produce forecasts of tick paralysis admissions as new data become available. This can have important implications for designing improved early warning systems for tick-borne illness.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009874 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 09874&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1009874

DOI: 10.1371/journal.pcbi.1009874

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1009874