EconPapers    
Economics at your fingertips  
 

CrowdGO: Machine learning and semantic similarity guided consensus Gene Ontology annotation

Maarten J M F Reijnders and Robert M Waterhouse

PLOS Computational Biology, 2022, vol. 18, issue 5, 1-14

Abstract: Characterising gene function for the ever-increasing number and diversity of species with annotated genomes relies almost entirely on computational prediction methods. These software are also numerous and diverse, each with different strengths and weaknesses as revealed through community benchmarking efforts. Meta-predictors that assess consensus and conflict from individual algorithms should deliver enhanced functional annotations. To exploit the benefits of meta-approaches, we developed CrowdGO, an open-source consensus-based Gene Ontology (GO) term meta-predictor that employs machine learning models with GO term semantic similarities and information contents. By re-evaluating each gene-term annotation, a consensus dataset is produced with high-scoring confident annotations and low-scoring rejected annotations. Applying CrowdGO to results from a deep learning-based, a sequence similarity-based, and two protein domain-based methods, delivers consensus annotations with improved precision and recall. Furthermore, using standard evaluation measures CrowdGO performance matches that of the community’s best performing individual methods. CrowdGO therefore offers a model-informed approach to leverage strengths of individual predictors and produce comprehensive and accurate gene functional annotations.Author summary: New technologies mean that we are able to read the genetic blueprints in the form of complete genome sequences from many different species. We are also able to use computational methods combined with evidence from experiments to map out the locations in the genomes of many thousands of genes and other important regions. However, discovering and characterising the biological functions of all these genes and their protein products requires considerably more experimental work. In order to gain insights into the possible functions of the many genes currently lacking functional information from experiments we must therefore rely on methods that computationally predict protein functions. Many different software tools have been developed to tackle this challenge, each with their own strengths and weaknesses as shown by several community-based competitions that assess the performance of the predictors. Taking advantage of powerful modern machine learning techniques, we developed CrowdGO, a new software that aims to combine predictions from several tools and produce comprehensive and accurate gene functional annotations. CrowdGO is able to computationally assess agreements and conflicts amongst annotations from different predictors to then re-evaluate the results and deliver enhanced predictions of protein functions.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010075 (text/html)
https://journals.plos.org/ploscompbiol/article?id= ... 10075&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1010075

DOI: 10.1371/journal.pcbi.1010075

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pcbi00:1010075