Epidemic management and control through risk-dependent individual contact interventions
Tapio Schneider,
Oliver R A Dunbar,
Jinlong Wu,
Lucas Böttcher,
Dmitry Burov,
Alfredo Garbuno-Inigo,
Gregory L Wagner,
Sen Pei,
Chiara Daraio,
Raffaele Ferrari and
Jeffrey Shaman
PLOS Computational Biology, 2022, vol. 18, issue 6, 1-32
Abstract:
Testing, contact tracing, and isolation (TTI) is an epidemic management and control approach that is difficult to implement at scale because it relies on manual tracing of contacts. Exposure notification apps have been developed to digitally scale up TTI by harnessing contact data obtained from mobile devices; however, exposure notification apps provide users only with limited binary information when they have been directly exposed to a known infection source. Here we demonstrate a scalable improvement to TTI and exposure notification apps that uses data assimilation (DA) on a contact network. Network DA exploits diverse sources of health data together with the proximity data from mobile devices that exposure notification apps rely upon. It provides users with continuously assessed individual risks of exposure and infection, which can form the basis for targeting individual contact interventions. Simulations of the early COVID-19 epidemic in New York City are used to establish proof-of-concept. In the simulations, network DA identifies up to a factor 2 more infections than contact tracing when both harness the same contact data and diagnostic test data. This remains true even when only a relatively small fraction of the population uses network DA. When a sufficiently large fraction of the population (≳ 75%) uses network DA and complies with individual contact interventions, targeting contact interventions with network DA reduces deaths by up to a factor 4 relative to TTI. Network DA can be implemented by expanding the computational backend of existing exposure notification apps, thus greatly enhancing their capabilities. Implemented at scale, it has the potential to precisely and effectively control future epidemics while minimizing economic disruption.Author summary: During the ongoing COVID-19 pandemic, exposure notification apps have been developed to scale up manual contact tracing. The apps use proximity data from mobile devices to automate notifying direct contacts of an infection source. The information they provide is limited because users receive only rare and binary alerts. Here we present network data assimilation (DA) as a new digital approach to epidemic management and control. Network DA uses the same data as exposure notification apps but uses it more effectively to provide frequently updated individual risk assessments to users.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010171 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 10171&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1010171
DOI: 10.1371/journal.pcbi.1010171
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().