EconPapers    
Economics at your fingertips  
 

VGsim: Scalable viral genealogy simulator for global pandemic

Vladimir Shchur, Vadim Spirin, Dmitry Sirotkin, Evgeni Burovski, Nicola De Maio and Russell Corbett-Detig

PLOS Computational Biology, 2022, vol. 18, issue 8, 1-15

Abstract: Accurate simulation of complex biological processes is an essential component of developing and validating new technologies and inference approaches. As an effort to help contain the COVID-19 pandemic, large numbers of SARS-CoV-2 genomes have been sequenced from most regions in the world. More than 5.5 million viral sequences are publicly available as of November 2021. Many studies estimate viral genealogies from these sequences, as these can provide valuable information about the spread of the pandemic across time and space. Additionally such data are a rich source of information about molecular evolutionary processes including natural selection, for example allowing the identification of new variants with transmissibility and immunity evasion advantages. To our knowledge, there is no framework that is both efficient and flexible enough to simulate the pandemic to approximate world-scale scenarios and generate viral genealogies of millions of samples. Here, we introduce a new fast simulator VGsim which addresses the problem of simulation genealogies under epidemiological models. The simulation process is split into two phases. During the forward run the algorithm generates a chain of population-level events reflecting the dynamics of the pandemic using an hierarchical version of the Gillespie algorithm. During the backward run a coalescent-like approach generates a tree genealogy of samples conditioning on the population-level events chain generated during the forward run. Our software can model complex population structure, epistasis and immunity escape.Author summary: We develop a fast and flexible simulation software package VGsim for modeling epidemiological processes and generating genealogies of large pathogen samples. The software takes into account host population structure, pathogen evolution, host immunity and some other epidemiological aspects. The computational efficiency of the package allows to simulate genealogies of tens of millions of samples, which is important, e.g., for SARS-CoV-2 genome studies.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010409 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 10409&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1010409

DOI: 10.1371/journal.pcbi.1010409

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-05-03
Handle: RePEc:plo:pcbi00:1010409