EconPapers    
Economics at your fingertips  
 

The inhibitory control of traveling waves in cortical networks

Grishma Palkar, Jian-young Wu and Bard Ermentrout

PLOS Computational Biology, 2023, vol. 19, issue 9, 1-32

Abstract: Propagating waves of activity can be evoked and can occur spontaneously in vivo and in vitro in cerebral cortex. These waves are thought to be instrumental in the propagation of information across cortical regions and as a means to modulate the sensitivity of neurons to subsequent stimuli. In normal tissue, the waves are sparse and tightly controlled by inhibition and other negative feedback processes. However, alterations of this balance between excitation and inhibition can lead to pathological behavior such as seizure-type dynamics (with low inhibition) or failure to propagate (with high inhibition). We develop a spiking one-dimensional network of neurons to explore the reliability and control of evoked waves and compare this to a cortical slice preparation where the excitability can be pharmacologically manipulated. We show that the waves enhance sensitivity of the cortical network to stimuli in specific spatial and temporal ways. To gain further insight into the mechanisms of propagation and transitions to pathological behavior, we derive a mean-field model for the synaptic activity. We analyze the mean-field model and a piece-wise constant approximation of it and study the stability of the propagating waves as spatial and temporal properties of the inhibition are altered. We show that that the transition to seizure-like activity is gradual but that the loss of propagation is abrupt and can occur via either the loss of existence of the wave or through a loss of stability leading to complex patterns of propagation.Author summary: Stimuli and other aspects of neuronal activity are carried across areas in the brain through the concerted activity of recurrently connected neurons. The activity is controlled through negative feedback from both inhibitory neurons and intrinsic currents in the excitatory neurons. Evoked activity often appears in the form of a traveling pulse of activity. In this paper we study the speed, magnitude, and other properties of these waves as various aspects of the negative feedback are altered through both computational modeling and manipulations of a slice of cortex. Inhibition enables information to be readily transmitted across distances without the neural activity blowing up into a seizure-like state.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010697 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 10697&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1010697

DOI: 10.1371/journal.pcbi.1010697

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pcbi00:1010697