BayFlux: A Bayesian method to quantify metabolic Fluxes and their uncertainty at the genome scale
Tyler W H Backman,
Christina Schenk,
Tijana Radivojevic,
David Ando,
Jahnavi Singh,
Jeffrey J Czajka,
Zak Costello,
Jay D Keasling,
Yinjie Tang,
Elena Akhmatskaya and
Hector Garcia Martin
PLOS Computational Biology, 2023, vol. 19, issue 11, 1-26
Abstract:
Metabolic fluxes, the number of metabolites traversing each biochemical reaction in a cell per unit time, are crucial for assessing and understanding cell function. 13C Metabolic Flux Analysis (13C MFA) is considered to be the gold standard for measuring metabolic fluxes. 13C MFA typically works by leveraging extracellular exchange fluxes as well as data from 13C labeling experiments to calculate the flux profile which best fit the data for a small, central carbon, metabolic model. However, the nonlinear nature of the 13C MFA fitting procedure means that several flux profiles fit the experimental data within the experimental error, and traditional optimization methods offer only a partial or skewed picture, especially in “non-gaussian” situations where multiple very distinct flux regions fit the data equally well. Here, we present a method for flux space sampling through Bayesian inference (BayFlux), that identifies the full distribution of fluxes compatible with experimental data for a comprehensive genome-scale model. This Bayesian approach allows us to accurately quantify uncertainty in calculated fluxes. We also find that, surprisingly, the genome-scale model of metabolism produces narrower flux distributions (reduced uncertainty) than the small core metabolic models traditionally used in 13C MFA. The different results for some reactions when using genome-scale models vs core metabolic models advise caution in assuming strong inferences from 13C MFA since the results may depend significantly on the completeness of the model used. Based on BayFlux, we developed and evaluated novel methods (P-13C MOMA and P-13C ROOM) to predict the biological results of a gene knockout, that improve on the traditional MOMA and ROOM methods by quantifying prediction uncertainty.Author summary: 13C MFA practitioners know that modeling results can be sensitive to minor modifications of the metabolic model. Certain parts of the metabolic model that are not well mapped to a molecular mechanism (e.g. drains to biomass or ATP maintenance) can have an inordinate impact on the final fluxes. The only way to ascertain the validity of the model is by checking that the result does not significantly differ from previously observed flux profiles. However, that approach diminishes the possibility of discovering truly novel flux profiles. Because of this strong dependence on metabolic model details, it would be very useful to have a systematic and repeatable way to produce these metabolic models. And indeed there is one: genome-scale metabolic models can be systematically obtained from genomic sequences, and represent all the known genomically encoded metabolic information. However, these models are much larger than the traditionally used central carbon metabolism models. Hence, the number of degrees of freedom of the model (fluxes) significantly exceeds the number of measurements (metabolite labeling profiles and exchange fluxes). As a result, one expects many flux profiles compatible with the experimental data. The best way to represent these is by identifying all fluxes compatible with the experimental data. Our novel method BayFlux, based on Bayesian inference and Markov Chain Monte Carlo sampling, provides this capability. Interestingly, this approach leads to the observation that some traditional optimization approaches can significantly overestimate flux uncertainty, and that genome-scale models of metabolism produce narrower flux distributions than the small core metabolic models that are traditionally used in 13C MFA. Furthermore, we show that the extra information provided by this approach allows us to improve knockout predictions, compared to traditional methods. Although the method scales well with more reactions, improvements will be needed to tackle the large metabolic models found in microbiomes and human metabolism.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011111 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 11111&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1011111
DOI: 10.1371/journal.pcbi.1011111
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().