EconPapers    
Economics at your fingertips  
 

LRT: Integrative analysis of scRNA-seq and scTCR-seq data to investigate clonal differentiation heterogeneity

Juan Xie, Hyeongseon Jeon, Gang Xin, Qin Ma and Dongjun Chung

PLOS Computational Biology, 2023, vol. 19, issue 7, 1-17

Abstract: Single-cell RNA sequencing (scRNA-seq) data has been widely used for cell trajectory inference, with the assumption that cells with similar expression profiles share the same differentiation state. However, the inferred trajectory may not reveal clonal differentiation heterogeneity among T cell clones. Single-cell T cell receptor sequencing (scTCR-seq) data provides invaluable insights into the clonal relationship among cells, yet it lacks functional characteristics. Therefore, scRNA-seq and scTCR-seq data complement each other in improving trajectory inference, where a reliable computational tool is still missing. We developed LRT, a computational framework for the integrative analysis of scTCR-seq and scRNA-seq data to explore clonal differentiation trajectory heterogeneity. Specifically, LRT uses the transcriptomics information from scRNA-seq data to construct overall cell trajectories and then utilizes both the TCR sequence information and phenotype information to identify clonotype clusters with distinct differentiation biasedness. LRT provides a comprehensive analysis workflow, including preprocessing, cell trajectory inference, clonotype clustering, trajectory biasedness evaluation, and clonotype cluster characterization. We illustrated its utility using scRNA-seq and scTCR-seq data of CD8+ T cells and CD4+ T cells with acute lymphocytic choriomeningitis virus infection. These analyses identified several clonotype clusters with distinct skewed distribution along the differentiation path, which cannot be revealed solely based on scRNA-seq data. Clones from different clonotype clusters exhibited diverse expansion capability, V-J gene usage pattern and CDR3 motifs. The LRT framework was implemented as an R package ‘LRT’, and it is now publicly accessible at https://github.com/JuanXie19/LRT. In addition, it provides two Shiny apps ‘shinyClone’ and ‘shinyClust’ that allow users to interactively explore distributions of clonotypes, conduct repertoire analysis, implement clustering of clonotypes, trajectory biasedness evaluation, and clonotype cluster characterization.Author summary: Understanding the dynamic changes behind biological processes is important for determining molecular mechanisms underlying normal tissue formulation, developmental disorders and pathologies. Usually, a biological process can be characterized by identifying a trajectory, a path that goes through the various cellular states associated with the process. Since cells in different states may express different sets of genes, researchers often infer cell trajectory via capturing transcriptomics changes. Dozens of methods have been developed for cell trajectory inference, and scRNA-seq data is predominantly utilized. However, cells from different clones may exist distinct differentiation patterns, while methods based only on scRNA-seq data cannot capture this heterogeneity. T cells play a key role in the immune system, and their high antigen recognition specificity is largely determined by their TCR sequences. Thanks to the advent of scTCR-seq technology, we can now identify the group of cells coming from the same clone. This paper describes our novel computational framework, namely LRT, and demonstrates that by complementing scRNA-seq data with the clonal information from scTCR-seq data using LRT, we are able to examine the clonal differentiation heterogeneity that cannot be revealed solely based on scRNA-seq data.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011300 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 11300&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1011300

DOI: 10.1371/journal.pcbi.1011300

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pcbi00:1011300