EconPapers    
Economics at your fingertips  
 

Temporal dynamics of short-term neural adaptation across human visual cortex

Amber Marijn Brands, Sasha Devore, Orrin Devinsky, Werner Doyle, Adeen Flinker, Daniel Friedman, Patricia Dugan, Jonathan Winawer and Iris Isabelle Anna Groen

PLOS Computational Biology, 2024, vol. 20, issue 5, 1-31

Abstract: Neural responses in visual cortex adapt to prolonged and repeated stimuli. While adaptation occurs across the visual cortex, it is unclear how adaptation patterns and computational mechanisms differ across the visual hierarchy. Here we characterize two signatures of short-term neural adaptation in time-varying intracranial electroencephalography (iEEG) data collected while participants viewed naturalistic image categories varying in duration and repetition interval. Ventral- and lateral-occipitotemporal cortex exhibit slower and prolonged adaptation to single stimuli and slower recovery from adaptation to repeated stimuli compared to V1-V3. For category-selective electrodes, recovery from adaptation is slower for preferred than non-preferred stimuli. To model neural adaptation we augment our delayed divisive normalization (DN) model by scaling the input strength as a function of stimulus category, enabling the model to accurately predict neural responses across multiple image categories. The model fits suggest that differences in adaptation patterns arise from slower normalization dynamics in higher visual areas interacting with differences in input strength resulting from category selectivity. Our results reveal systematic differences in temporal adaptation of neural population responses between lower and higher visual brain areas and show that a single computational model of history-dependent normalization dynamics, fit with area-specific parameters, accounts for these differences.Author summary: Neural responses in visual cortex adapt over time, with reduced responses to prolonged and repeated stimuli. Here, we examine how adaptation patterns differ across the visual hierarchy in neural responses recorded from human visual cortex with high temporal and spatial precision. To identify possible neural computations underlying short-term adaptation, we fit the response time courses using a temporal divisive normalization model. The model accurately predicts prolonged and repeated responses in lower and higher visual areas, and reveals differences in temporal adaptation between visual areas and stimulus categories. Our model suggests that differences in adaptation patterns result from differences in divisive normalization dynamics. Our findings shed light on how information is integrated in the brain on a millisecond-time scale and offer an intuitive framework to study the emergence of neural dynamics across brain areas and stimuli.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012161 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 12161&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1012161

DOI: 10.1371/journal.pcbi.1012161

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pcbi00:1012161