EconPapers    
Economics at your fingertips  
 

A multi-scale study of thalamic state-dependent responsiveness

Jorin Overwiening, Federico Tesler, Domenico Guarino and Alain Destexhe

PLOS Computational Biology, 2024, vol. 20, issue 12, 1-24

Abstract: The thalamus is the brain’s central relay station, orchestrating sensory processing and cognitive functions. However, how thalamic function depends on internal and external states, is not well understood. A comprehensive understanding would necessitate the integration of single cell dynamics with their collective behavior at population level. For this we propose a biologically realistic mean-field model of the thalamus, describing thalamocortical relay neurons (TC) and thalamic reticular neurons (RE). We perform a multi-scale study of thalamic responsiveness and its dependence on cell and brain states. Building upon existing single-cell experiments we show that: (1) Awake and sleep-like states can be defined via the absence/presence of the neuromodulator acetylcholine (ACh), which indirectly controls bursting in TC and RE. (2) Thalamic response to sensory stimuli is linear in awake state and becomes nonlinear in sleep state, while cortical input generates nonlinear response in both awake and sleep state. (3) Stimulus response is controlled by cortical input, which suppresses responsiveness in awake state while it ‘wakes-up’ the thalamus in sleep state promoting a linear response. (4) Synaptic noise induces a global linear responsiveness, diminishing the difference in response between thalamic states. Finally, the model replicates spindle oscillations within a sleep-like state, exhibiting a qualitative change in activity and responsiveness. The development of this thalamic mean-field model provides a new tool for incorporating detailed thalamic dynamics in large scale brain simulations.Author summary: The thalamus is a fascinating brain region that acts as the gate for information flow between the brain and the external world. While its role and importance in sensory and motor functions is well-established, recent studies suggest it also plays a key role in higher-order functions such as attention, sleep, memory, and cognition. However, understanding how the thalamus acts on all these functions is challenging due to its complex interactions at both the neuron level and within larger brain networks. In this study, we used a mathematical model grounded in experimental data that realistically captures the behavior of the thalamus, connecting the scales of individual neurons with larger populations. We found that the thalamus functions differently depending on whether the brain is in an awake or a sleep-like state: When awake, the thalamus processes sensory information in a straightforward way, resulting in a faithful information transmission to the cortex. But during sleep, only significant or important stimuli create a response. Importantly, this behavior can be controlled by cortical-like input and noise. With this study, we shed light on how the thalamus might modulate and interact with various brain functions across different scales and states. This research provides a deeper understanding of the thalamus’s role and could inform future studies on sleep, attention, and related brain disorders.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012262 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 12262&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1012262

DOI: 10.1371/journal.pcbi.1012262

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pcbi00:1012262