EconPapers    
Economics at your fingertips  
 

The clinical utility and cost impact of cystatin C measurement in the diagnosis and management of chronic kidney disease: A primary care cohort study

Adam Shardlow, Natasha J McIntyre, Simon D S Fraser, Paul Roderick, James Raftery, Richard J Fluck, Christopher W McIntyre and Maarten W Taal

PLOS Medicine, 2017, vol. 14, issue 10, 1-18

Abstract: Background: To reduce over-diagnosis of chronic kidney disease (CKD) resulting from the inaccuracy of creatinine-based estimates of glomerular filtration rate (GFR), UK and international guidelines recommend that cystatin-C-based estimates of GFR be used to confirm or exclude the diagnosis in people with GFR 45–59 ml/min/1.73 m2 and no albuminuria (CKD G3aA1). Whilst there is good evidence for cystatin C being a marker of GFR and risk in people with CKD, its use to define CKD in this manner has not been evaluated in primary care, the setting in which most people with GFR in this range are managed. Methods and findings: A total of 1,741 people with CKD G3a or G3b defined by 2 estimated GFR (eGFR) values more than 90 days apart were recruited to the Renal Risk in Derby study between June 2008 and March 2010. Using Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations, we compared GFR estimated from creatinine (eGFRcreat), cystatin C (eGFRcys), and both (eGFRcreat-cys) at baseline and over 5 years of follow-up. We analysed the proportion of participants with CKD G3aA1 reclassified to ‘no CKD’ or more advanced CKD with the latter two equations. We further assessed the impact of using cystatin-C-based eGFR in risk prediction equations for CKD progression and all-cause mortality and investigated non-GFR determinants of eGFRcys. Finally, we estimated the cost implications of implementing National Institute for Health and Care Excellence (NICE) guidance to use eGFRcys to confirm the diagnosis in people classified as CKD G3aA1 by eGFRcreat. Mean eGFRcys was significantly lower than mean eGFRcreat (45.1 ml/min/1.73 m2, 95% CI 44.4 to 45.9, versus 53.6 ml/min/1.73 m2, 95% CI 53.0 to 54.1, P

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002400 (text/html)
https://journals.plos.org/plosmedicine/article/fil ... 02400&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pmed00:1002400

DOI: 10.1371/journal.pmed.1002400

Access Statistics for this article

More articles in PLOS Medicine from Public Library of Science
Bibliographic data for series maintained by plosmedicine ().

 
Page updated 2025-05-11
Handle: RePEc:plo:pmed00:1002400