An Analysis of Genetic Diversity and Inbreeding in Wuchereria bancrofti: Implications for the Spread and Detection of Drug Resistance
Thomas S Churcher,
Anne E Schwab,
Roger K Prichard and
María-Gloria Basáñez
PLOS Neglected Tropical Diseases, 2008, vol. 2, issue 4, 1-9
Abstract:
Estimates of genetic diversity in helminth infections of humans often have to rely on genotyping (immature) parasite transmission stages instead of adult worms. Here we analyse the results of one such study investigating a single polymorphic locus (a change at position 200 of the β-tubulin gene) in microfilariae of the lymphatic filarial parasite Wuchereria bancrofti. The presence of this genetic change has been implicated in benzimidazole resistance in parasitic nematodes of farmed ruminants. Microfilariae were obtained from patients of three West African villages, two of which were sampled prior to the introduction of mass drug administration. An individual-based stochastic model was developed showing that a wide range of allele frequencies in the adult worm populations could have generated the observed microfilarial genetic diversity. This suggests that appropriate theoretical null models are required in order to interpret studies that genotype transmission stages. Wright's hierarchical F-statistic was used to investigate the population structure in W. bancrofti microfilariae and showed significant deficiency of heterozygotes compared to the Hardy-Weinberg equilibrium; this may be partially caused by a high degree of parasite genetic differentiation between hosts. Studies seeking to quantify accurately the genetic diversity of helminth populations by analysing transmission stages should increase their sample size to account for the variability in allele frequency between different parasite life-stages. Helminth genetic differentiation between hosts and non-random mating will also increase the number of hosts (and the number of samples per host) that need to be genotyped, and could enhance the rate of spread of anthelmintic resistance.Author Summary: During the last decade, there has been a substantial increase in the use of mass drug administration to reduce the disease caused by parasitic worms. With so many people regularly receiving treatment, there is a risk that drug resistance may develop. As a result, the number of studies looking for genetic markers of drug resistance has increased noticeably. In this paper we analyse the results of one such study that investigated the presence of genes associated with drug resistance in parasites responsible for elephantiasis. This study, like many other studies of human parasitic infections, relies on analysing parasite immature stages (such as eggs) because the adult worms are often inaccessible within the human body. Using computer models we show how the gene frequency in the immature stages may vary from that in the adult worm population. Parasites with these markers for drug resistance might also be unevenly distributed across the host population even prior to treatment. This may increase the spread of drug resistance and make it harder to detect. We suggest that studies conducted only on parasite immature stages should be interpreted with caution and should carefully consider the number of people and the number of parasites they analyse.
Date: 2008
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0000211 (text/html)
https://journals.plos.org/plosntds/article/file?id ... 00211&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pntd00:0000211
DOI: 10.1371/journal.pntd.0000211
Access Statistics for this article
More articles in PLOS Neglected Tropical Diseases from Public Library of Science
Bibliographic data for series maintained by plosntds ().