Optimal Lead Time for Dengue Forecast
Yien Ling Hii,
Joacim Rocklöv,
Stig Wall,
Lee Ching Ng,
Choon Siang Tang and
Nawi Ng
PLOS Neglected Tropical Diseases, 2012, vol. 6, issue 10, 1-9
Abstract:
Background: A dengue early warning system aims to prevent a dengue outbreak by providing an accurate prediction of a rise in dengue cases and sufficient time to allow timely decisions and preventive measures to be taken by local authorities. This study seeks to identify the optimal lead time for warning of dengue cases in Singapore given the duration required by a local authority to curb an outbreak. Methodology and Findings: We developed a Poisson regression model to analyze relative risks of dengue cases as functions of weekly mean temperature and cumulative rainfall with lag times of 1–5 months using spline functions. We examined the duration of vector control and cluster management in dengue clusters > = 10 cases from 2000 to 2010 and used the information as an indicative window of the time required to mitigate an outbreak. Finally, we assessed the gap between forecast and successful control to determine the optimal timing for issuing an early warning in the study area. Our findings show that increasing weekly mean temperature and cumulative rainfall precede risks of increasing dengue cases by 4–20 and 8–20 weeks, respectively. These lag times provided a forecast window of 1–5 months based on the observed weather data. Based on previous vector control operations, the time needed to curb dengue outbreaks ranged from 1–3 months with a median duration of 2 months. Thus, a dengue early warning forecast given 3 months ahead of the onset of a probable epidemic would give local authorities sufficient time to mitigate an outbreak. Conclusions: Optimal timing of a dengue forecast increases the functional value of an early warning system and enhances cost-effectiveness of vector control operations in response to forecasted risks. We emphasize the importance of considering the forecast-mitigation gaps in respective study areas when developing a dengue forecasting model. Author Summary: A dengue early warning system that would provide an accurate forecast could enhance the effectiveness of dengue control, but only if it is given in sufficient time for local authorities to implement those control operations. In this study, we have suggested the optimal timing for issuing a warning of a dengue outbreak in Singapore that will allow authorities adequate time to respond. We first analyzed the relationship between the risk of dengue cases and weather predictors at 1–5 month lag times to gauge the possible lead time for providing an accurate dengue forecast. We then determined the average time needed for local authorities to curb the outbreak of clusters of 10 dengue cases or more using vector control and cluster duration records for the period 2000–2010. Increasing weekly mean temperature and cumulative rainfall preceded a rise in dengue cases up to 5 months with higher risks evident at a lag time of 3–4 months. Local authorities required an average of 2 months with a maximum of 3 months for effective control. Therefore, a dengue early warning given at least 3 months ahead of time would provide sufficient time for local authorities to moderate an outbreak.
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0001848 (text/html)
https://journals.plos.org/plosntds/article/file?id ... 01848&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pntd00:0001848
DOI: 10.1371/journal.pntd.0001848
Access Statistics for this article
More articles in PLOS Neglected Tropical Diseases from Public Library of Science
Bibliographic data for series maintained by plosntds ().