EconPapers    
Economics at your fingertips  
 

Laboratory Colonisation and Genetic Bottlenecks in the Tsetse Fly Glossina pallidipes

Marc Ciosi, Daniel K Masiga and Charles M R Turner

PLOS Neglected Tropical Diseases, 2014, vol. 8, issue 2, 1-12

Abstract: Background: The IAEA colony is the only one available for mass rearing of Glossina pallidipes, a vector of human and animal African trypanosomiasis in eastern Africa. This colony is the source for Sterile Insect Technique (SIT) programs in East Africa. The source population of this colony is unclear and its genetic diversity has not previously been evaluated and compared to field populations. Methodology/Principal Findings: We examined the genetic variation within and between the IAEA colony and its potential source populations in north Zimbabwe and the Kenya/Uganda border at 9 microsatellites loci to retrace the demographic history of the IAEA colony. We performed classical population genetics analyses and also combined historical and genetic data in a quantitative analysis using Approximate Bayesian Computation (ABC). There is no evidence of introgression from the north Zimbabwean population into the IAEA colony. Moreover, the ABC analyses revealed that the foundation and establishment of the colony was associated with a genetic bottleneck that has resulted in a loss of 35.7% of alleles and 54% of expected heterozygosity compared to its source population. Also, we show that tsetse control carried out in the 1990's is likely reduced the effective population size of the Kenya/Uganda border population. Conclusions/Significance: All the analyses indicate that the area of origin of the IAEA colony is the Kenya/Uganda border and that a genetic bottleneck was associated with the foundation and establishment of the colony. Genetic diversity associated with traits that are important for SIT may potentially have been lost during this genetic bottleneck which could lead to a suboptimal competitiveness of the colony males in the field. The genetic diversity of the colony is lower than that of field populations and so, studies using colony flies should be interpreted with caution when drawing general conclusions about G. pallidipes biology. Author Summary: There is only one mass reared laboratory colony of Glossina pallidipes, a vector of human African trypanosomiasis and arguably the main vector of animal African trypanosomiasis in eastern Africa. This colony is the main one used for basic research on this species and is intended to be used for Sterile Insect Technique (SIT) programs for control of field populations. The origins of this colony are not clear and the extent to which it is genetically representative of the species is unknown. Using population genetics analyses to compare the current colony with two potential source populations we have shown that the colony is from the Kenya/Uganda border and that its foundation and establishment in the laboratory were associated with a genetic bottleneck, i.e. reduction of genetic variation due to increased genetic drift in a population of reduced size. As a consequence, the genetic diversity of the colony is lower than that of G. pallidipes field populations.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0002697 (text/html)
https://journals.plos.org/plosntds/article/file?id ... 02697&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pntd00:0002697

DOI: 10.1371/journal.pntd.0002697

Access Statistics for this article

More articles in PLOS Neglected Tropical Diseases from Public Library of Science
Bibliographic data for series maintained by plosntds ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pntd00:0002697