EconPapers    
Economics at your fingertips  
 

Strengths and Weaknesses of Global Positioning System (GPS) Data-Loggers and Semi-structured Interviews for Capturing Fine-scale Human Mobility: Findings from Iquitos, Peru

Valerie A Paz-Soldan, Robert C Reiner, Amy C Morrison, Steven T Stoddard, Uriel Kitron, Thomas W Scott, John P Elder, Eric S Halsey, Tadeusz J Kochel, Helvio Astete and Gonzalo M Vazquez-Prokopec

PLOS Neglected Tropical Diseases, 2014, vol. 8, issue 6, 1-11

Abstract: Quantifying human mobility has significant consequences for studying physical activity, exposure to pathogens, and generating more realistic infectious disease models. Location-aware technologies such as Global Positioning System (GPS)-enabled devices are used increasingly as a gold standard for mobility research. The main goal of this observational study was to compare and contrast the information obtained through GPS and semi-structured interviews (SSI) to assess issues affecting data quality and, ultimately, our ability to measure fine-scale human mobility. A total of 160 individuals, ages 7 to 74, from Iquitos, Peru, were tracked using GPS data-loggers for 14 days and later interviewed using the SSI about places they visited while tracked. A total of 2,047 and 886 places were reported in the SSI and identified by GPS, respectively. Differences in the concordance between methods occurred by location type, distance threshold (within a given radius to be considered a match) selected, GPS data collection frequency (i.e., 30, 90 or 150 seconds) and number of GPS points near the SSI place considered to define a match. Both methods had perfect concordance identifying each participant's house, followed by 80–100% concordance for identifying schools and lodgings, and 50–80% concordance for residences and commercial and religious locations. As the distance threshold selected increased, the concordance between SSI and raw GPS data increased (beyond 20 meters most locations reached their maximum concordance). Processing raw GPS data using a signal-clustering algorithm decreased overall concordance to 14.3%. The most common causes of discordance as described by a sub-sample (n = 101) with whom we followed-up were GPS units being accidentally off (30%), forgetting or purposely not taking the units when leaving home (24.8%), possible barriers to the signal (4.7%) and leaving units home to recharge (4.6%). We provide a quantitative assessment of the strengths and weaknesses of both methods for capturing fine-scale human mobility.Author Summary: Being able to quantify human movement is important for studying activity patterns, exposure to pathogens and developing realistic infectious disease models. We compared fine-scale human mobility data obtained by Global Positioning System (GPS)-enabled devices and semi-structured interviews (SSI) from 160 individuals in Iquitos, Peru, in order to assess the quality of data using these two different approaches and our ability to measure fine-scale human mobility patterns in a resource-poor urban environment. Using various methods to process the GPS data, we found the SSI identified more locations a person had visited than GPS. Though the GPS gave more precise data, there were behavioral, technical, and analytical barriers. The SSI provided richer context and was easier to process, but also had more false positives. SSI was the only option for identifying locations retrospectively.

Date: 2014
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0002888 (text/html)
https://journals.plos.org/plosntds/article/file?id ... 02888&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pntd00:0002888

DOI: 10.1371/journal.pntd.0002888

Access Statistics for this article

More articles in PLOS Neglected Tropical Diseases from Public Library of Science
Bibliographic data for series maintained by plosntds ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pntd00:0002888