A Multi-Host Agent-Based Model for a Zoonotic, Vector-Borne Disease. A Case Study on Trypanosomiasis in Eastern Province, Zambia
Simon Alderton,
Ewan T Macleod,
Neil E Anderson,
Kathrin Schaten,
Joanna Kuleszo,
Martin Simuunza,
Susan C Welburn and
Peter M Atkinson
PLOS Neglected Tropical Diseases, 2016, vol. 10, issue 12, 1-28
Abstract:
Background: This paper presents a new agent-based model (ABM) for investigating T. b. rhodesiense human African trypanosomiasis (rHAT) disease dynamics, produced to aid a greater understanding of disease transmission, and essential for development of appropriate mitigation strategies. Methods: The ABM was developed to model rHAT incidence at a fine spatial scale along a 75 km transect in the Luangwa Valley, Zambia. The method offers a complementary approach to traditional compartmentalised modelling techniques, permitting incorporation of fine scale demographic data such as ethnicity, age and gender into the simulation. Results: Through identification of possible spatial, demographic and behavioural characteristics which may have differing implications for rHAT risk in the region, the ABM produced output that could not be readily generated by other techniques. On average there were 1.99 (S.E. 0.245) human infections and 1.83 (S.E. 0.183) cattle infections per 6 month period. The model output identified that the approximate incidence rate (per 1000 person-years) was lower amongst cattle owning households (0.079, S.E. 0.017), than those without cattle (0.134, S.E. 0.017). Immigrant tribes (e.g. Bemba I.R. = 0.353, S.E.0.155) and school-age children (e.g. 5–10 year old I.R. = 0.239, S.E. 0.041) were the most at-risk for acquiring infection. These findings have the potential to aid the targeting of future mitigation strategies. Conclusion: ABMs provide an alternative way of thinking about HAT and NTDs more generally, offering a solution to the investigation of local-scale questions, and which generate results that can be easily disseminated to those affected. The ABM can be used as a tool for scenario testing at an appropriate spatial scale to allow the design of logistically feasible mitigation strategies suggested by model output. This is of particular importance where resources are limited and management strategies are often pushed to the local scale. Author Summary: African trypanosomiasis is a parasitic disease which affects humans and other animals in 36 sub-Saharan African countries. The disease is transmitted by the tsetse fly, and the human form of the diseases is known as sleeping sickness. Infectious disease transmission has traditionally been modelled using techniques that consider the impact on a population as a whole (e.g. compartmentalised models such as SIR). For diseases such as sleeping sickness, which are often prevalent in sparsely populated rural environments, these models don’t always capture the spatial and demographic heterogeneity within an area, and the varying exposure to the disease that this can cause. This research introduces a novel agent-based model to the field, which incorporates spatial data for the Luangwa Valley case study, along with demographic data for its inhabitants. Tsetse and potential human and animal hosts are modelled at the individual level, allowing each contact and infection to be recorded through time. Through modelling at a fine-scale, we can incorporate detailed mechanisms for tsetse birth, feeding, reproduction and death, while considering what demographics, and which locations, have a heightened risk of disease.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0005252 (text/html)
https://journals.plos.org/plosntds/article/file?id ... 05252&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pntd00:0005252
DOI: 10.1371/journal.pntd.0005252
Access Statistics for this article
More articles in PLOS Neglected Tropical Diseases from Public Library of Science
Bibliographic data for series maintained by plosntds ().