Temperature modulates dengue virus epidemic growth rates through its effects on reproduction numbers and generation intervals
Amir S Siraj,
Rachel J Oidtman,
John H Huber,
Moritz U G Kraemer,
Oliver J Brady,
Michael A Johansson and
T Alex Perkins
PLOS Neglected Tropical Diseases, 2017, vol. 11, issue 7, 1-19
Abstract:
Epidemic growth rate, r, provides a more complete description of the potential for epidemics than the more commonly studied basic reproduction number, R0, yet the former has never been described as a function of temperature for dengue virus or other pathogens with temperature-sensitive transmission. The need to understand the drivers of epidemics of these pathogens is acute, with arthropod-borne virus epidemics becoming increasingly problematic. We addressed this need by developing temperature-dependent descriptions of the two components of r—R0 and the generation interval—to obtain a temperature-dependent description of r. Our results show that the generation interval is highly sensitive to temperature, decreasing twofold between 25 and 35°C and suggesting that dengue virus epidemics may accelerate as temperatures increase, not only because of more infections per generation but also because of faster generations. Under the empirical temperature relationships that we considered, we found that r peaked at a temperature threshold that was robust to uncertainty in model parameters that do not depend on temperature. Although the precise value of this temperature threshold could be refined following future studies of empirical temperature relationships, the framework we present for identifying such temperature thresholds offers a new way to classify regions in which dengue virus epidemic intensity could either increase or decrease under future climate change.Author summary: Recurrent, rapidly intensifying epidemics of dengue–the world’s most prevalent mosquito-borne viral disease–pose a challenge to healthcare systems throughout the tropical and subtropical world. An acute disease that tends to respond well to proper treatment, the sometimes intense nature of dengue epidemics has been known to overwhelm healthcare systems and elevate the morbidity and mortality of patients left without adequate medical treatment under peak epidemic conditions. Here, we quantify the temperature dependence of dengue epidemic intensity by quantifying two distinct determinants of epidemic growth rate: the average number of secondary infections arising from each primary infection and the average time between successive infections in humans. Our results show that the time between successive infections in humans decreases steadily with increasing temperatures, whereas the average number of secondary infections peaks at intermediate temperatures. Altogether, this suggests a peak temperature for dengue epidemic intensity. Applying this result to global temperature projections under future climate change scenarios suggests that dengue epidemics in many regions of the world could become more intense under future temperature increases.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0005797 (text/html)
https://journals.plos.org/plosntds/article/file?id ... 05797&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pntd00:0005797
DOI: 10.1371/journal.pntd.0005797
Access Statistics for this article
More articles in PLOS Neglected Tropical Diseases from Public Library of Science
Bibliographic data for series maintained by plosntds ().