Effects of Genetic Mutations and Chemical Exposures on Caenorhabditis elegans Feeding: Evaluation of a Novel, High-Throughput Screening Assay
Windy A Boyd,
Sandra J McBride and
Jonathan H Freedman
PLOS ONE, 2007, vol. 2, issue 12, 1-8
Abstract:
Background: Government agencies have defined a need to reduce, refine or replace current mammalian-based bioassays with testing methods that use alternative species. Invertebrate species, such as Caenorhabditis elegans, provide an attractive option because of their short life cycles, inexpensive maintenance, and high degree of evolutionary conservation with higher eukaryotes. The C. elegans pharynx is a favorable model for studying neuromuscular function, and the effects of chemicals on neuromuscular activity, i.e., feeding. Current feeding methodologies, however, are labor intensive and only semi-quantitative. Methodology/Principal Findings: Here a high-throughput assay is described that uses flow cytometry to measure C. elegans feeding by determining the size and intestinal fluorescence of hundreds of nematodes after exposure to fluorescent-labeled microspheres. This assay was validated by quantifying fluorescence in feeding-defective C. elegans (eat mutants), and by exposing wild-type nematodes to the neuroactive compounds, serotonin and arecoline. The eat mutations previously determined to cause slow pumping rates exhibited the lowest feeding levels with our assay. Concentration-dependent increases in feeding levels after serotonin exposures were dependent on food availability, while feeding levels decreased in arecoline-exposed nematodes regardless of the presence of food. The effects of the environmental contaminants, cadmium chloride and chlorpyrifos, on wild-type C. elegans feeding were then used to demonstrate an application of the feeding assay. Cadmium exposures above 200 µM led to a sharp drop in feeding levels. Feeding of chlorpyrifos-exposed nematodes decreased in a concentration-dependent fashion with an EC50 of 2 µM. Conclusions/Significance: The C. elegans fluorescence microsphere feeding assay is a rapid, reliable method for the assessment of neurotoxic effects of pharmaceutical drugs, industrial chemicals or environmental agents. This assay may also be applicable to large scale genetic or RNAi screens used to identify genes that are necessary for the development or function of the pharynx or other neuromuscular systems.
Date: 2007
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001259 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 01259&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0001259
DOI: 10.1371/journal.pone.0001259
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().