EconPapers    
Economics at your fingertips  
 

Analysis of the Human Kinome Using Methods Including Fold Recognition Reveals Two Novel Kinases

Kristine M Briedis, Ayelet Starr and Philip E Bourne

PLOS ONE, 2008, vol. 3, issue 2, 1-5

Abstract: Background: Protein sequence similarity is a commonly used criterion for inferring the unknown function of a protein from a protein of known function. However, proteins can diverge significantly over time such that sequence similarity is difficult, if not impossible, to find. In some cases, a structural similarity remains over long evolutionary time scales and once detected can be used to predict function. Methodology/Principal Findings: Here we employed a high-throughput approach to assign structural and functional annotation to the human proteome, focusing on the collection of human protein kinases, the human kinome. We compared human protein sequences to a library of domains from known structures using WU-BLAST, PSI-BLAST, and 123D. This approach utilized both sequence comparison and fold recognition methods. The resulting set of potential protein kinases was cross-checked against previously identified human protein kinases, and analyzed for conserved kinase motifs. Conclusions/Significance: We demonstrate that our structure-based method can be used to identify both typical and atypical human protein kinases. We also identify two potentially novel kinases that contain an interesting combination of kinase and acyl-CoA dehydrogenase domains.

Date: 2008
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001597 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 01597&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0001597

DOI: 10.1371/journal.pone.0001597

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0001597